
picozero
Release 0.4.1

Raspberry Pi Foundation

Feb 02, 2023

CONTENTS:

1 Status 3

2 Documentation 5

3 Code 7

4 Thanks 9

5 Table of Contents 11
5.1 Getting started . 11
5.2 Recipes . 19
5.3 picozero API . 31
5.4 Development . 57
5.5 Contributing . 58
5.6 Change log . 59

Python Module Index 61

Index 63

i

ii

picozero, Release 0.4.1

A beginner-friendly library to help you use common electronics components with the Raspberry Pi Pico.

from picozero import LED, Button

led = LED(1)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

CONTENTS: 1

https://badge.fury.io/py/picozero
https://readthedocs.org/projects/picozero/

picozero, Release 0.4.1

2 CONTENTS:

CHAPTER

ONE

STATUS

Beta. There will be bugs and issues. API changes are likely. More devices will be added over time.

3

picozero, Release 0.4.1

4 Chapter 1. Status

CHAPTER

TWO

DOCUMENTATION

Documentation is available at picozero.readthedocs.io:

• Installation and getting started guide

• Recipes and how-to’s

• API

• Example code

5

https://picozero.readthedocs.io
https://picozero.readthedocs.io/en/latest/gettingstarted.html
https://picozero.readthedocs.io/en/latest/recipes.html
https://picozero.readthedocs.io/en/latest/api.html
https://github.com/RaspberryPiFoundation/picozero/tree/master/docs/examples

picozero, Release 0.4.1

6 Chapter 2. Documentation

CHAPTER

THREE

CODE

The code and project is at github.com/RaspberryPiFoundation/picozero.

Issues can be raised at github.com/RaspberryPiFoundation/picozero/issues (see Contributing).

The latest distribution is available at pypi.org/project/picozero/.

7

https://github.com/RaspberryPiFoundation/picozero
https://github.com/RaspberryPiFoundation/picozero/issues
https://picozero.readthedocs.io/en/latest/contributing.html
https://pypi.org/project/picozero/

picozero, Release 0.4.1

8 Chapter 3. Code

CHAPTER

FOUR

THANKS

picozero is inspired by gpiozero (and reuses some of its underlying structure), but is, by design, lighter weight and
aligned with the Raspberry Pi Pico. Thank you to everyone who has contributed to the gpiozero project.

9

https://gpiozero.readthedocs.io/en/stable/

picozero, Release 0.4.1

10 Chapter 4. Thanks

CHAPTER

FIVE

TABLE OF CONTENTS

5.1 Getting started

5.1.1 Install using Thonny

Requirements

A Windows, macOS, or Linux computer with the Thonny Python IDE installed.

You can find information on how to install Thonny in the Introduction to Raspberry Pi Pico guide.

Once Thonny is installed, you will need to ensure that you are using the latest MicroPython firmware. Details on how
to install or update the Raspberry Pi Pico MicroPython firmware can be found in the Pico guide.

Select the MicroPython interpreter

You can change which interpreter you are using in Thonny by selecting the desired option at the bottom right of the
screen. Make sure that MicroPython (Raspberry Pi Pico) is selected.

11

https://thonny.org/
https://learning-admin.raspberrypi.org/en/projects/introduction-to-the-pico/2
https://learning-admin.raspberrypi.org/en/projects/introduction-to-the-pico/3

picozero, Release 0.4.1

Install picozero from PyPI in Thonny

To install picozero within Thonny, select Tools > Manage packages. . .

12 Chapter 5. Table of Contents

picozero, Release 0.4.1

Search for picozero on PyPI.

5.1. Getting started 13

picozero, Release 0.4.1

Click on install to download the package.

14 Chapter 5. Table of Contents

picozero, Release 0.4.1

5.1.2 Manual install

picozero can be installed by copying the picozero.py code to your Raspberry Pi Pico.

Either clone the picozero GitHub repository or copy the code from the picozero.py file and save it on your main com-
puter.

Create a new file called picozero.py, copy code into the file and save it on your Raspberry Pi Pico.

5.1. Getting started 15

https://github.com/RaspberryPiFoundation/picozero
https://raw.githubusercontent.com/RaspberryPiFoundation/picozero/master/picozero/picozero.py?token=GHSAT0AAAAAABRLTKWZDBSYBE54NJ7AIZ6MYSENI2A

picozero, Release 0.4.1

Copy picozero.py using Thonny

Alternatively, you can use the Thonny file manager to transfer the picozero.py file to your Raspberry Pi Pico.

In the View menu, ensure that the Files option has a tick. This will let you see the files.

Either clone the picozero GitHub repository or copy the code from the picozero.py file and save it on your main com-
puter.

In Thonny, navigate to the cloned directory or location you saved the file in and find the picozero.py file.

Right click on the file and select the Upload to / option. You should see a copy of the picozero.py file on the
Raspberry Pi Pico.

16 Chapter 5. Table of Contents

https://github.com/RaspberryPiFoundation/picozero
https://raw.githubusercontent.com/RaspberryPiFoundation/picozero/master/picozero/picozero.py?token=GHSAT0AAAAAABRLTKWZDBSYBE54NJ7AIZ6MYSENI2A

picozero, Release 0.4.1

5.1. Getting started 17

picozero, Release 0.4.1

5.1.3 Write a program to control the onboard LED

The following code will blink the onboard LED at a frequency of once per second.:

from picozero import pico_led
from time import sleep

while True:
pico_led.on()
sleep(0.5)
pico_led.off()
sleep(0.5)

Run the program on your computer

You can choose to run the program from your computer.

Click on the Run current script button.

Choose to save the script on This computer and provide a filename.

Run the program on your Raspberry Pi Pico

You can choose to run the program from the Raspberry Pi Pico.

Click on the Run current script button.

Choose to save the script on Raspberry Pi Pico and provide a filename.

18 Chapter 5. Table of Contents

picozero, Release 0.4.1

If you call the file main.py, it will run automatically when the Pico is powered on.

5.2 Recipes

The recipes provide examples of how you can use picozero.

5.2.1 Importing picozero

You will need add an import line to the top of your script to use picozero.

You can import just what you need, separating items with a comma ,:

from picozero import pico_led, LED

Now you can use pico_led and LED in your script:

pico_led.on() # Turn on the LED on the Raspberry Pi Pico
led = LED(14) # Control an LED connected to pin GP14
led.on()

Alternatively, the whole picozero library can be imported:

import picozero

In this case, all references to picozero items must be prefixed:

picozero.pico_led.on()
led = picozero.LED(14)

5.2. Recipes 19

picozero, Release 0.4.1

5.2.2 Pico LED

To turn on the LED on your Raspberry Pi Pico:

from picozero import pico_led

pico_led.on()

Run your script to see the LED turn on.

Using the pico_led is equivalent to:

pico_led = LED(25)

You can use pico_led in the same way as external LEDs created using LED.

5.2.3 Pin out

You can output a diagram of the Raspberry Pi Pico which displays its pins and their numbers.

from picozero import pinout

pinout()

---usb---
GP0 1 |o o| -1 VBUS
GP1 2 |o o| -2 VSYS
GND 3 |o o| -3 GND
GP2 4 |o o| -4 3V3_EN
GP3 5 |o o| -5 3V3(OUT)
GP4 6 |o o| -6 ADC_VREF
GP5 7 |o o| -7 GP28 ADC2
GND 8 |o o| -8 GND AGND
GP6 9 |o o| -9 GP27 ADC1
GP7 10 |o o| -10 GP26 ADC0
GP8 11 |o o| -11 RUN
GP9 12 |o o| -12 GP22
GND 13 |o o| -13 GND
GP10 14 |o o| -14 GP21
GP11 15 |o o| -15 GP20
GP12 16 |o o| -16 GP19
GP13 17 |o o| -17 GP18
GND 18 |o o| -18 GND
GP14 19 |o o| -19 GP17
GP15 20 |o o| -20 GP16

20 Chapter 5. Table of Contents

picozero, Release 0.4.1

5.2.4 LEDs

You can control external LEDs with a Raspberry Pi Pico.

Flash

Turn an LED on and off:

from picozero import LED
from time import sleep

led = LED(14)

led.on()
sleep(1)
led.off()

Toggle an LED to turn it from on to off or off to on:

from picozero import LED
from time import sleep

led = LED(14)

while True:
led.toggle()
sleep(1)

Alternatively, you can use the blink() method.

from picozero import LED

led = LED(14)

led.blink()

Brightness

Set the brightness of an LED:

from picozero import LED
from time import sleep

led = LED(14)

while True:
led.brightness = 0 # off
sleep(1)
led.brightness = 0.5 # half brightness

(continues on next page)

5.2. Recipes 21

picozero, Release 0.4.1

(continued from previous page)

sleep(1)
led.brightness = 1 # full brightness
sleep(1)

Create a pulse effect:

from picozero import LED
from time import sleep
from math import sin, radians

led = LED(14)

while True:
for i in range(360):

angle = radians(i)
led.brightness = 0.5 + 0.5 * sin(angle)
sleep(0.01)

Alternatively, you can use the pulse() method.

from picozero import LED

led = LED(14)

led.pulse()

5.2.5 Buttons

You can connect buttons and switches to a Raspberry Pi Pico and detect when they are pressed.

Check if a Button is pressed:

from picozero import Button
from time import sleep

button = Button(18)

while True:
if button.is_pressed:

print("Button is pressed")
else:

print("Button is not pressed")
sleep(0.1)

Run a function every time a Button is pressed:

from picozero import Button, pico_led
from time import sleep

button = Button(18)

def led_on_off():
(continues on next page)

22 Chapter 5. Table of Contents

picozero, Release 0.4.1

(continued from previous page)

pico_led.on()
sleep(1)
pico_led.off()

button.when_pressed = led_on_off

Note: The line button.when_pressed = led_on_off does not run the function led_on_off, rather it creates
a reference to the function to be called when the button is pressed. Accidental use of button.when_pressed =
led_on_off() would set the when_pressed action to None (the return value of this function), which would mean
nothing happens when the button is pressed.

Turn the pico_led on when a Button is pressed and off when it is released:

from picozero import Button, pico_led

button = Button(18)

button.when_pressed = pico_led.on
button.when_released = pico_led.off

5.2.6 RGB LEDs

Set colours with an RGBLED:

from picozero import RGBLED
from time import sleep

rgb = RGBLED(red=2, green=1, blue=0)

rgb.red = 255 # full red
sleep(1)
rgb.red = 128 # half red
sleep(1)

rgb.on() # white

rgb.color = (0, 255, 0) # full green
sleep(1)
rgb.color = (255, 0, 255) # magenta
sleep(1)
rgb.color = (255, 255, 0) # yellow
sleep(1)
rgb.color = (0, 255, 255) # cyan
sleep(1)
rgb.color = (255, 255, 255) # white
sleep(1)

rgb.color = (0, 0, 0) # off
sleep(1)

(continues on next page)

5.2. Recipes 23

picozero, Release 0.4.1

(continued from previous page)

slowly increase intensity of blue
for n in range(255):

rgb.blue = n
sleep(0.01)

rgb.off()

Use toggle() and invert():

from picozero import RGBLED
from time import sleep

rgb = RGBLED(red=2, green=1, blue=0)

rgb.color = (255, 165, 0) # orange
sleep(1)

for _ in range(6):
rgb.toggle()
sleep(1)

for _ in range(6):
rgb.invert()
sleep(1)

rgb.off()

Blink

Use blink() blink to change between colours. You can control which colours are used and how long the LED is set
to each colour. The colour (0, 0, 0) represents off.

You can control whether blink() runs a fixed number of times and whether it waits until it has finished or returns
immediately so other code can run.

from picozero import RGBLED
from time import sleep

rgb = RGBLED(1, 2, 3)

rgb.blink() # does not wait
sleep(6)
rgb.off()
sleep(1)

blink purple 2 seconds, off 0.5 seconds
rgb.blink(on_times=(2, 0.5), colors=((1, 0, 1), (0, 0, 0)), wait=True, n=3)

rgb.off()
sleep(1)

(continues on next page)

24 Chapter 5. Table of Contents

picozero, Release 0.4.1

(continued from previous page)

blink red 1 second, green 0.5 seconds, blue 0.25 seconds
rgb.blink((1, 0.5, 0.25), colors=((1, 0, 0), (0, 1, 0), (0, 0, 1)), wait=True, n=2)

Pulse

Use pulse() to gradually change the LED colour. The default will pulse between red and off, then green and off, then
blue and off.

from picozero import RGBLED
from time import sleep

rgb = RGBLED(1, 2, 3)

rgb.pulse() # does not wait
sleep(6)
rgb.off()
sleep(1)

2 second to fade from purple to off, 0.5 seconds to change from off to purple
rgb.pulse(fade_times=(2, 0.5), colors=((1, 0, 1), (0, 0, 0)), wait=True, n=3)

rgb.off()
sleep(1)

4 seconds to change from red to green, 2 to change from green to blue, then 1 to␣
→˓change from blue back to red
rgb.pulse((4, 2, 1), colors=((1, 0, 0), (0, 1, 0), (0, 0, 1)), wait=True, n=2)

Cycle

The default for cycle() is to cycle from red to green, then green to blue, then blue to red.

from picozero import RGBLED
from time import sleep

rgb = RGBLED(1, 2, 3)

Gradually colour cycle through colours between red and green, green and blue then blue␣
→˓and red
rgb.cycle()
sleep(4)
rgb.off()
sleep(1)

Colour cycle slower in the opposite direction
rgb.cycle(fade_times=3, colors=((0, 0, 1), (0, 1, 0), (1, 0, 0)), wait=True, n=2)
rgb.off()

5.2. Recipes 25

picozero, Release 0.4.1

5.2.7 Potentiometer

Print the value, voltage, and percent reported by a potentiometer:

Potentiometer connected to GP26 (ADC0), GND and 3V

from time import sleep
from pico import Pot

pot = Pot(26)

while True:
print(pot.value, pot.voltage)
sleep(0.1)

Note: In the Thonny Python editor, choose View > Plotter to plot the output of print().

Use a potentiometer to control the brightness of an LED:

from picozero import Pot, LED

Potentiometer connected to GP26 (ADC0), GND and 3V
LED connected to GP0

pot = Pot(26)
led = LED(0)

while True:
led.value = pot.value

5.2.8 Buzzer

Control an active buzzer that plays a note when powered:

Active Buzzer that plays a note when powered
from time import sleep
from picozero import Buzzer

buzzer = Buzzer(10)

buzzer.on()
sleep(1)
buzzer.off()
sleep(1)

buzzer.beep()
sleep(4)
buzzer.off()

26 Chapter 5. Table of Contents

picozero, Release 0.4.1

5.2.9 Speaker

Control a passive buzzer or speaker that can play different tones or frequencies:

from picozero import Speaker
from time import sleep

speaker = Speaker(5)

def tada():
c_note = 523
speaker.play(c_note, 0.1)
sleep(0.1)
speaker.play(c_note, 0.9)

def chirp():
global speaker
for _ in range(5):

for i in range(5000, 2999, -100):
speaker.play(i, 0.01)

sleep(0.2)

try:
tada()
sleep(1)
chirp()

finally: # Turn the speaker off if interrupted
speaker.off()

Play a tune

Play a tune of note names and durations in beats:

from picozero import Speaker

speaker = Speaker(5)

BEAT = 0.25 # 240 BPM

liten_mus = [['d5', BEAT / 2], ['d#5', BEAT / 2], ['f5', BEAT], ['d6', BEAT], ['a#5',␣
→˓BEAT], ['d5', BEAT],

['f5', BEAT], ['d#5', BEAT], ['d#5', BEAT], ['c5', BEAT / 2],['d5', BEAT /␣
→˓2], ['d#5', BEAT],

['c6', BEAT], ['a5', BEAT], ['d5', BEAT], ['g5', BEAT], ['f5', BEAT], ['f5
→˓', BEAT], ['d5', BEAT / 2],

['d#5', BEAT / 2], ['f5', BEAT], ['g5', BEAT], ['a5', BEAT], ['a#5', BEAT],
→˓ ['a5', BEAT], ['g5', BEAT],

['g5', BEAT], ['', BEAT / 2], ['a#5', BEAT / 2], ['c6', BEAT / 2], ['d6',␣
→˓BEAT / 2], ['c6', BEAT / 2],

['a#5', BEAT / 2], ['a5', BEAT / 2], ['g5', BEAT / 2], ['a5', BEAT / 2], [
(continues on next page)

5.2. Recipes 27

picozero, Release 0.4.1

(continued from previous page)

→˓'a#5', BEAT / 2], ['c6', BEAT],
['f5', BEAT], ['f5', BEAT], ['f5', BEAT / 2], ['d#5', BEAT / 2], ['d5',␣

→˓BEAT], ['f5', BEAT], ['d6', BEAT],
['d6', BEAT / 2], ['c6', BEAT / 2], ['b5', BEAT], ['g5', BEAT], ['g5',␣

→˓BEAT], ['c6', BEAT / 2],
['a#5', BEAT / 2], ['a5', BEAT], ['f5', BEAT], ['d6', BEAT], ['a5', BEAT],␣

→˓['a#5', BEAT * 1.5]]

try:
speaker.play(liten_mus)

finally: # Turn speaker off if interrupted
speaker.off()

Play individual notes

Play individual notes and control the timing or perform another action:

from picozero import Speaker
from time import sleep

speaker = Speaker(5)

BEAT = 0.4

liten_mus = [['d5', BEAT / 2], ['d#5', BEAT / 2], ['f5', BEAT], ['d6', BEAT], ['a#5',␣
→˓BEAT], ['d5', BEAT],

['f5', BEAT], ['d#5', BEAT], ['d#5', BEAT], ['c5', BEAT / 2],['d5', BEAT /␣
→˓2], ['d#5', BEAT],

['c6', BEAT], ['a5', BEAT], ['d5', BEAT], ['g5', BEAT], ['f5', BEAT], ['f5
→˓', BEAT], ['d5', BEAT / 2],

['d#5', BEAT / 2], ['f5', BEAT], ['g5', BEAT], ['a5', BEAT], ['a#5', BEAT],
→˓ ['a5', BEAT], ['g5', BEAT],

['g5', BEAT], ['', BEAT / 2], ['a#5', BEAT / 2], ['c6', BEAT / 2], ['d6',␣
→˓BEAT / 2], ['c6', BEAT / 2],

['a#5', BEAT / 2], ['a5', BEAT / 2], ['g5', BEAT / 2], ['a5', BEAT / 2], [
→˓'a#5', BEAT / 2], ['c6', BEAT],

['f5', BEAT], ['f5', BEAT], ['f5', BEAT / 2], ['d#5', BEAT / 2], ['d5',␣
→˓BEAT], ['f5', BEAT], ['d6', BEAT],

['d6', BEAT / 2], ['c6', BEAT / 2], ['b5', BEAT], ['g5', BEAT], ['g5',␣
→˓BEAT], ['c6', BEAT / 2],

['a#5', BEAT / 2], ['a5', BEAT], ['f5', BEAT], ['d6', BEAT], ['a5', BEAT],␣
→˓['a#5', BEAT * 1.5]]

try:
for note in liten_mus:

speaker.play(note)
sleep(0.1) # leave a gap between notes

finally: # Turn speaker off if interrupted
speaker.off()

28 Chapter 5. Table of Contents

picozero, Release 0.4.1

5.2.10 Servo

A servo motor connected to a single pin, 3.3v and ground.

Move the servo to its minimum, mid and maximum positions.

from picozero import Servo
from time import sleep

servo = Servo(1)

servo.min()
sleep(1)

servo.mid()
sleep(1)

servo.max()
sleep(1)

servo.off()

Pulse the servo between its minumum and maximum position.

from picozero import Servo

servo = Servo(1)

servo.pulse()

Move the servo gradually from its minimum to maximum position in 100 increments.

from picozero import Servo
from time import sleep

servo = Servo(1)

for i in range(0, 100):
servo.value = i / 100
sleep(0.1)

servo.off()

5.2. Recipes 29

picozero, Release 0.4.1

5.2.11 Motor

Move a motor connected via two pins (forward and backward) and a motor controller board:

from picozero import Motor
from time import sleep

motor = Motor(14, 15)

motor.move()
sleep(1)
motor.stop()

5.2.12 Robot rover

Make a simple two-wheeled robot rover.

Move the rover forward for 1 second and stop:

from picozero import Robot
from time import sleep

robot_rover = Robot(left=(14,15), right=(12,13))

move forward
robot_rover.forward()
sleep(1)
robot_rover.stop()

Move the rover (roughly) in a square:

from picozero import Robot

robot_rover = Robot(left=(14,15), right=(12,13))

for i in range(4):
move forward for 1 second
robot_rover.forward(t=1, wait=True)
rotate to the left for 1 second
robot_rover.left(t=1, wait=True)

5.2.13 Internal temperature sensor

Check the internal temperature of the Raspberry Pi Pico in degrees Celcius:

Choose View -> Plotter in Thonny to see a graph of the results

from picozero import pico_temp_sensor
from time import sleep

(continues on next page)

30 Chapter 5. Table of Contents

picozero, Release 0.4.1

(continued from previous page)

while True:
print(pico_temp_sensor.temp)
sleep(0.1)

5.2.14 Ultrasonic distance sensor

Get the distance in metres from an ultrasonic distance sensor (HC-SR04):

from picozero import DistanceSensor
from time import sleep

ds = DistanceSensor(echo=2, trigger=3)

while True:
print(ds.distance)
sleep(0.1)

5.3 picozero API

5.3.1 LED

picozero.LED(pin, pwm=True, active_high=True, initial_value=False)
Returns an instance of DigitalLED or PWMLED depending on the value of the pwm parameter.

from picozero import LED

my_pwm_led = LED(1)

my_digital_led = LED(2, pwm=False)

Parameters

• pin (int) – The pin that the device is connected to.

• pin – If pwm is True (the default), a PWMLED will be returned. If pwm is False, a
DigitalLED will be returned. A PWMLED can control the brightness of the LED but uses 1
PWM channel.

• active_high (bool) – If True (the default), the on() method will set the Pin to HIGH.
If False, the on() method will set the Pin to LOW (the off() method always does the
opposite).

• initial_value (bool) – If False (the default), the device will be off initially. If True,
the device will be switched on initially.

5.3. picozero API 31

picozero, Release 0.4.1

5.3.2 DigitalLED

class picozero.DigitalLED(pin, active_high=True, initial_value=False)
Bases: DigitalOutputDevice

Represents a simple LED, which can be switched on and off.

Parameters

• pin (int) – The pin that the device is connected to.

• active_high (bool) – If True (the default), the on() method will set the Pin to HIGH.
If False, the on() method will set the Pin to LOW (the off() method always does the
opposite).

• initial_value (bool) – If False (the default), the LED will be off initially. If True, the
LED will be switched on initially.

blink(on_time=1, off_time=None, n=None, wait=False)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds that the device will be on. Defaults to
1.

• off_time (float) – The length of time in seconds that the device will be off. If None, it
will be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the blink operation. If None is specified, the device
will continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the device stops turning on and off. If
False, the method will return and the device will turn on and off in the background. Defaults
to False.

close()

Closes the device and turns the device off. Once closed, the device can no longer be used.

off()

Turns the device off.

on(value=1, t=None, wait=False)
Turns the device on.

Parameters

• value (float) – The value to set when turning on. Defaults to 1.

• t (float) – The time in seconds that the device should be on. If None is specified, the
device will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the device will turn on in the background. Defaults to False. Only
effective if t is not None.

toggle()

If the device is off, turn it on. If it is on, turn it off.

property active_high

Sets or returns the active_high property. If True, the on()method will set the Pin to HIGH. If False, the
on() method will set the Pin to LOW (the off() method always does the opposite).

32 Chapter 5. Table of Contents

picozero, Release 0.4.1

property is_active

Returns True if the device is on.

property is_lit

Returns True if the device is on.

property pin

Returns the pin number used by the device.

property value

Sets or returns a value representing the state of the device: 1 is on, 0 is off.

5.3.3 PWMLED

class picozero.PWMLED(pin, freq=100, duty_factor=65535, active_high=True, initial_value=False)
Bases: PWMOutputDevice

Represents an LED driven by a PWM pin; the brightness of the LED can be changed.

Parameters

• pin (int) – The pin that the device is connected to.

• freq (int) – The frequency of the PWM signal in hertz. Defaults to 100.

• duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and
65535. Defaults to 65535.

• active_high (bool) – If True (the default), the on() method will set the Pin to HIGH.
If False, the on() method will set the Pin to LOW (the off() method always does the
opposite).

• initial_value (bool) – If False (the default), the LED will be off initially. If True, the
LED will be switched on initially.

blink(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

• off_time (float) – The length of time in seconds the device will be off. If None, it will
be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the blink operation. If None, the device will
continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the LED stops blinking. If False, the
method will return and the LED will blink in the background. Defaults to False.

• fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – The length of time in seconds to spend fading out. If None, it
will be the same as fade_in_time. Defaults to None.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states when fading. Defaults to 25.

close()

Closes the device and turns the device off. Once closed, the device can no longer be used.

5.3. picozero API 33

picozero, Release 0.4.1

off()

Turns the device off.

on(value=1, t=None, wait=False)
Turns the device on.

Parameters

• value (float) – The value to set when turning on. Defaults to 1.

• t (float) – The time in seconds that the device should be on. If None is specified, the
device will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the device will turn on in the background. Defaults to False. Only
effective if t is not None.

pulse(fade_in_time=1, fade_out_time=None, n=None, wait=False, fps=25)
Makes the device pulse on and off repeatedly.

Parameters

• fade_in_time (float) – The length of time in seconds that the device will take to turn
on. Defaults to 1.

• fade_out_time (float) – The length of time in seconds that the device will take to turn
off. Defaults to 1.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states. Defaults to 25.

• n (int) – The number of times to pulse the LED. If None, the LED will pulse forever.
Defaults to None.

• wait (bool) – If True, the method will block until the LED stops pulsing. If False, the
method will return and the LED will pulse in the background. Defaults to False.

toggle()

If the device is off, turn it on. If it is on, turn it off.

property active_high

Sets or returns the active_high property. If True, the on()method will set the Pin to HIGH. If False, the
on() method will set the Pin to LOW (the off() method always does the opposite).

property brightness

Sets or returns a value representing the state of the device: 1 is on, 0 is off.

property freq

Returns the current frequency of the device.

property is_active

Returns True if the device is on.

property pin

Returns the pin number used by the device.

property value

Sets or returns a value representing the state of the device: 1 is on, 0 is off.

34 Chapter 5. Table of Contents

picozero, Release 0.4.1

5.3.4 RGBLED

class picozero.RGBLED(red=None, green=None, blue=None, active_high=True, initial_value=(0, 0, 0),
pwm=True)

Bases: OutputDevice, PinsMixin

Extends OutputDevice and represents a full colour LED component (composed of red, green, and blue LEDs).
Connect the common cathode (longest leg) to a ground pin; connect each of the other legs (representing the red,
green, and blue anodes) to any GP pins. You should use three limiting resistors (one per anode). The following
code will make the LED yellow:

from picozero import RGBLED
rgb = RGBLED(1, 2, 3)
rgb.color = (1, 1, 0)

0–255 colours are also supported:

rgb.color = (255, 255, 0)

Parameters

• red (int) – The GP pin that controls the red component of the RGB LED.

• green (int) – The GP pin that controls the green component of the RGB LED.

• blue (int) – The GP pin that controls the blue component of the RGB LED.

• active_high (bool) – Set to True (the default) for common cathode RGB LEDs. If you
are using a common anode RGB LED, set this to False.

• initial_value (Color or tuple) – The initial color for the RGB LED. Defaults to black
(0, 0, 0).

• pwm (bool) – If True (the default), construct PWMLED instances for each component of the
RGBLED. If False, construct DigitalLED instances.

blink(on_times=1, fade_times=0, colors=((1, 0, 0), (0, 1, 0), (0, 0, 1)), n=None, wait=False, fps=25)
Makes the device blink between colours repeatedly.

Parameters

• on_times (float) – Single value or tuple of numbers of seconds to stay on each colour.
Defaults to 1 second.

• fade_times (float) – Single value or tuple of times to fade between each colour. Must
be 0 if pwm was False when the class was constructed.

• colors (tuple Tuple of colours to blink between, use (0, 0, 0) for off.) – The colours
to blink between. Defaults to red, green, blue.

• n (int or None) – Number of times to blink; None (the default) means forever.

• wait (bool) – If False (the default), use a Timer to manage blinking, continue blinking,
and return immediately. If False, only return when the blinking is finished (warning: the
default value of n will result in this method never returning).

close()

Turns the device off.

5.3. picozero API 35

picozero, Release 0.4.1

cycle(fade_times=1, colors=((1, 0, 0), (0, 1, 0), (0, 0, 1)), n=None, wait=False, fps=25)
Makes the device fade in and out repeatedly.

Parameters

• fade_times (float) – Single value or tuple of numbers of seconds to spend fading be-
tween colours. Defaults to 1.

• fade_times – Number of seconds to spend fading out. Defaults to 1.

• on_color – Tuple of colours to cycle between. Defaults to red, green, blue.

• n (int or None) – Number of times to cycle; None (the default) means forever.

invert()

Inverts the state of the device. If the device is currently off (value is (0, 0, 0)), this changes it to “fully”
on (value is (1, 1, 1)). If the device has a specific colour, this method inverts the colour.

off()

Turns the device off.

on()

Turns the LED on. This is equivalent to setting the LED color to white, e.g. (1, 1, 1).

pulse(fade_times=1, colors=((0, 0, 0), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 0, 0), (0, 0, 1)), n=None, wait=False,
fps=25)

Makes the device fade between colours repeatedly.

Parameters

• fade_times (float) – Single value or tuple of numbers of seconds to spend fading. De-
faults to 1.

• fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

• on_color – Tuple of colours to pulse between in order. Defaults to red, off, green, off,
blue, off.

• n (int or None) – Number of times to pulse; None (the default) means forever.

toggle()

Toggles the state of the device. If the device has a specific colour, then that colour is saved and the device
is turned off. If the device is off, it will be changed to the last colour it had when it was on or, if none, to
fully on (value is (1, 1, 1)).

property active_high

Sets or returns the active_high property. If True, the on()method will set the Pin to HIGH. If False, the
on() method will set the Pin to LOW (the off() method always does the opposite).

property blue

Represents the blue component of the LED as a value between 0 and 255 if pwm was True when the class
was constructed (but only takes values of 0 or 255 otherwise).

property color

Represents the colour of the LED as an RGB 3-tuple of (red, green, blue)where each value is between
0 and 255 if pwm was True when the class was constructed (but only takes values of 0 or 255 otherwise).
For example, red would be (255, 0, 0) and yellow would be (255, 255, 0), whereas orange would
be (255, 127, 0).

36 Chapter 5. Table of Contents

picozero, Release 0.4.1

property colour

Represents the colour of the LED as an RGB 3-tuple of (red, green, blue)where each value is between
0 and 255 if pwm was True when the class was constructed (but only takes values of 0 or 255 otherwise).
For example, red would be (255, 0, 0) and yellow would be (255, 255, 0), whereas orange would
be (255, 127, 0).

property green

Represents the green component of the LED as a value between 0 and 255 if pwm was True when the class
was constructed (but only takes values of 0 or 255 otherwise).

property is_active

Returns True if the LED is currently active (not black) and False otherwise.

property is_lit

Returns True if the LED is currently active (not black) and False otherwise.

property pins

Returns a tuple of pins used by the device.

property red

Represents the red component of the LED as a value between 0 and 255 if pwm was True when the class
was constructed (but only takes values of 0 or 255 otherwise).

property value

Represents the colour of the LED as an RGB 3-tuple of (red, green, blue)where each value is between
0 and 1 if pwm was True when the class was constructed (but only takes values of 0 or 1 otherwise). For
example, red would be (1, 0, 0) and yellow would be (1, 1, 0), whereas orange would be (1, 0.5,
0).

5.3.5 Buzzer

class picozero.Buzzer(pin, active_high=True, initial_value=False)
Bases: DigitalOutputDevice

Represents an active or passive buzzer, which can be turned on or off.

Parameters

• pin (int) – The pin that the device is connected to.

• active_high (bool) – If True (the default), the on() method will set the Pin to HIGH.
If False, the on() method will set the Pin to LOW (the off() method always does the
opposite).

• initial_value (bool) – If False (the default), the Buzzer will be off initially. If True,
the Buzzer will be switched on initially.

beep(on_time=1, off_time=None, n=None, wait=False)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds that the device will be on. Defaults to
1.

• off_time (float) – The length of time in seconds that the device will be off. If None, it
will be the same as on_time. Defaults to None.

5.3. picozero API 37

picozero, Release 0.4.1

• n (int) – The number of times to repeat the blink operation. If None is specified, the device
will continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the device stops turning on and off. If
False, the method will return and the device will turn on and off in the background. Defaults
to False.

blink(on_time=1, off_time=None, n=None, wait=False)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds that the device will be on. Defaults to
1.

• off_time (float) – The length of time in seconds that the device will be off. If None, it
will be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the blink operation. If None is specified, the device
will continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the device stops turning on and off. If
False, the method will return and the device will turn on and off in the background. Defaults
to False.

close()

Closes the device and turns the device off. Once closed, the device can no longer be used.

off()

Turns the device off.

on(value=1, t=None, wait=False)
Turns the device on.

Parameters

• value (float) – The value to set when turning on. Defaults to 1.

• t (float) – The time in seconds that the device should be on. If None is specified, the
device will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the device will turn on in the background. Defaults to False. Only
effective if t is not None.

toggle()

If the device is off, turn it on. If it is on, turn it off.

property active_high

Sets or returns the active_high property. If True, the on()method will set the Pin to HIGH. If False, the
on() method will set the Pin to LOW (the off() method always does the opposite).

property is_active

Returns True if the device is on.

property pin

Returns the pin number used by the device.

property value

Sets or returns a value representing the state of the device: 1 is on, 0 is off.

38 Chapter 5. Table of Contents

picozero, Release 0.4.1

5.3.6 PWMBuzzer

class picozero.PWMBuzzer(pin, freq=440, duty_factor=1023, active_high=True, initial_value=False)
Bases: PWMOutputDevice

Represents a passive buzzer driven by a PWM pin; the volume of the buzzer can be changed.

Parameters

• pin (int) – The pin that the buzzer is connected to.

• freq (int) – The frequency of the PWM signal in hertz. Defaults to 440.

• duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and
65535. Defaults to 1023.

• active_high (bool) – If True (the default), the on() method will set the Pin to HIGH.
If False, the on() method will set the Pin to LOW (the off() method always does the
opposite).

• initial_value (bool) – If False (the default), the buzzer will be off initially. If True,
the buzzer will be switched on initially.

beep(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

• off_time (float) – The length of time in seconds the device will be off. If None, it will
be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the blink operation. If None, the device will
continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the LED stops blinking. If False, the
method will return and the LED will blink in the background. Defaults to False.

• fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – The length of time in seconds to spend fading out. If None, it
will be the same as fade_in_time. Defaults to None.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states when fading. Defaults to 25.

blink(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

• off_time (float) – The length of time in seconds the device will be off. If None, it will
be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the blink operation. If None, the device will
continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the LED stops blinking. If False, the
method will return and the LED will blink in the background. Defaults to False.

• fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

5.3. picozero API 39

picozero, Release 0.4.1

• fade_out_time (float) – The length of time in seconds to spend fading out. If None, it
will be the same as fade_in_time. Defaults to None.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states when fading. Defaults to 25.

close()

Closes the device and turns the device off. Once closed, the device can no longer be used.

off()

Turns the device off.

on(value=1, t=None, wait=False)
Turns the device on.

Parameters

• value (float) – The value to set when turning on. Defaults to 1.

• t (float) – The time in seconds that the device should be on. If None is specified, the
device will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the device will turn on in the background. Defaults to False. Only
effective if t is not None.

pulse(fade_in_time=1, fade_out_time=None, n=None, wait=False, fps=25)
Makes the device pulse on and off repeatedly.

Parameters

• fade_in_time (float) – The length of time in seconds that the device will take to turn
on. Defaults to 1.

• fade_out_time (float) – The length of time in seconds that the device will take to turn
off. Defaults to 1.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states. Defaults to 25.

• n (int) – The number of times to pulse the LED. If None, the LED will pulse forever.
Defaults to None.

• wait (bool) – If True, the method will block until the LED stops pulsing. If False, the
method will return and the LED will pulse in the background. Defaults to False.

toggle()

If the device is off, turn it on. If it is on, turn it off.

property active_high

Sets or returns the active_high property. If True, the on()method will set the Pin to HIGH. If False, the
on() method will set the Pin to LOW (the off() method always does the opposite).

property freq

Returns the current frequency of the device.

property is_active

Returns True if the device is on.

property pin

Returns the pin number used by the device.

40 Chapter 5. Table of Contents

picozero, Release 0.4.1

property value

Sets or returns a value representing the state of the device: 1 is on, 0 is off.

property volume

Sets or returns a value representing the state of the device: 1 is on, 0 is off.

5.3.7 Speaker

class picozero.Speaker(pin, initial_freq=440, initial_volume=0, duty_factor=1023, active_high=True)
Bases: OutputDevice, PinMixin

Represents a speaker driven by a PWM pin.

Parameters

• pin (int) – The pin that the speaker is connected to.

• initial_freq (int) – The initial frequency of the PWM signal in hertz. Defaults to 440.

• initial_volume (int) – The initial volume of the PWM signal. This is a value between 0
and 1. Defaults to 0.

• duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and
65535. Defaults to 1023.

• active_high (bool) – If True (the default), the on() method will set the Pin to HIGH.
If False, the on() method will set the Pin to LOW (the off() method always does the
opposite).

beep(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)
Makes the buzzer turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds that the device will be on. Defaults to
1.

• off_time (float) – The length of time in seconds that the device will be off. If None, it
will be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the beep operation. If None, the device will
continue beeping forever. The default is None.

• wait (bool) – If True, the method will block until the buzzer stops beeping. If False, the
method will return and the buzzer will beep in the background. Defaults to False.

• fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – The length of time in seconds to spend fading out. If None, it
will be the same as fade_in_time. Defaults to None.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states when fading. Defaults to 25.

blink(on_time=1, off_time=None, n=None, wait=False)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds that the device will be on. Defaults to
1.

5.3. picozero API 41

picozero, Release 0.4.1

• off_time (float) – The length of time in seconds that the device will be off. If None, it
will be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the blink operation. If None is specified, the device
will continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the device stops turning on and off. If
False, the method will return and the device will turn on and off in the background. Defaults
to False.

close()

Turns the device off.

off()

Turns the device off.

on(volume=1)
Turns the device on.

Parameters

• value (float) – The value to set when turning on. Defaults to 1.

• t (float) – The time in seconds that the device should be on. If None is specified, the
device will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the device will turn on in the background. Defaults to False. Only
effective if t is not None.

play(tune=440, duration=1, volume=1, n=1, wait=True)
Plays a tune for a given duration.

Parameters

• tune (int) – The tune to play can be specified as:

– a single “note”, represented as: + a frequency in Hz e.g. 440 + a midi note e.g. 60 + a
note name as a string e.g. “E4”

– a list of notes and duration e.g. [440, 1] or [“E4”, 2]

– a list of two value tuples of (note, duration) e.g. [(440,1), (60, 2), (“e4”, 3)]

Defaults to 440.

• volume (int) – The volume of the tune; 1 is maximum volume, 0 is mute. Defaults to 1.

• duration (float) – The duration of each note in seconds. Defaults to 1.

• n (int) – The number of times to play the tune. If None, the tune will play forever. Defaults
to 1.

• wait (bool) – If True, the method will block until the tune has finished. If False, the
method will return and the tune will play in the background. Defaults to True.

toggle()

If the device is off, turn it on. If it is on, turn it off.

property active_high

Sets or returns the active_high property. If True, the on()method will set the Pin to HIGH. If False, the
on() method will set the Pin to LOW (the off() method always does the opposite).

42 Chapter 5. Table of Contents

picozero, Release 0.4.1

property freq

Sets or returns the current frequency of the speaker.

property is_active

Returns True if the device is on.

property pin

Returns the pin number used by the device.

property value

Sets or returns the value of the speaker. The value is a tuple of (freq, volume).

property volume

Sets or returns the volume of the speaker: 1 for maximum volume, 0 for off.

5.3.8 Servo

class picozero.Servo(pin, initial_value=None, min_pulse_width=0.001, max_pulse_width=0.002,
frame_width=0.02, duty_factor=65535)

Bases: PWMOutputDevice

Represents a PWM-controlled servo motor.

Setting the value to 0 will move the servo to its minimum position, 1 will move the servo to its maximum position.
Setting the value to None will turn the servo “off” (i.e. no signal is sent).

Parameters

• pin (int) – The pin the servo motor is connected to.

• initial_value (bool) – If 0, the servo will be set to its minimum position. If 1, the servo
will set to its maximum position. If None (the default), the position of the servo will not
change.

• min_pulse_width (float) – The pulse width corresponding to the servo’s minimum po-
sition. This defaults to 1ms.

• max_pulse_width (float) – The pulse width corresponding to the servo’s maximum po-
sition. This defaults to 2ms.

• frame_width (float) – The length of time between servo control pulses measured in sec-
onds. This defaults to 20ms which is a common value for servos.

• duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and
65535. Defaults to 65535.

blink(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

• off_time (float) – The length of time in seconds the device will be off. If None, it will
be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the blink operation. If None, the device will
continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the LED stops blinking. If False, the
method will return and the LED will blink in the background. Defaults to False.

5.3. picozero API 43

picozero, Release 0.4.1

• fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – The length of time in seconds to spend fading out. If None, it
will be the same as fade_in_time. Defaults to None.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states when fading. Defaults to 25.

close()

Closes the device and turns the device off. Once closed, the device can no longer be used.

max()

Set the servo to its maximum position.

mid()

Set the servo to its mid-point position.

min()

Set the servo to its minimum position.

off()

Turn the servo “off” by setting the value to None.

on(value=1, t=None, wait=False)
Turns the device on.

Parameters

• value (float) – The value to set when turning on. Defaults to 1.

• t (float) – The time in seconds that the device should be on. If None is specified, the
device will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the device will turn on in the background. Defaults to False. Only
effective if t is not None.

pulse(fade_in_time=1, fade_out_time=None, n=None, wait=False, fps=25)
Makes the device pulse on and off repeatedly.

Parameters

• fade_in_time (float) – The length of time in seconds that the device will take to turn
on. Defaults to 1.

• fade_out_time (float) – The length of time in seconds that the device will take to turn
off. Defaults to 1.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states. Defaults to 25.

• n (int) – The number of times to pulse the LED. If None, the LED will pulse forever.
Defaults to None.

• wait (bool) – If True, the method will block until the LED stops pulsing. If False, the
method will return and the LED will pulse in the background. Defaults to False.

toggle()

If the device is off, turn it on. If it is on, turn it off.

44 Chapter 5. Table of Contents

picozero, Release 0.4.1

property active_high

Sets or returns the active_high property. If True, the on()method will set the Pin to HIGH. If False, the
on() method will set the Pin to LOW (the off() method always does the opposite).

property freq

Returns the current frequency of the device.

property is_active

Returns True if the device is on.

property pin

Returns the pin number used by the device.

property value

Sets or returns a value representing the state of the device: 1 is on, 0 is off.

5.3.9 Motor

class picozero.Motor(forward, backward, pwm=True)
Bases: PinsMixin

Represents a motor connected to a motor controller that has a two-pin input. One pin drives the motor “forward”,
the other drives the motor “backward”.

Parameters

• forward (int) – The GP pin that controls the “forward” motion of the motor.

• backward (int) – The GP pin that controls the “backward” motion of the motor.

• pwm (bool) – If True (the default), PWM pins are used to drive the motor. When using
PWM pins, values between 0 and 1 can be used to set the speed.

backward(speed=1, t=None, wait=False)
Makes the motor turn “backward”.

Parameters

• speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults
to 1.

• t (float) – The time in seconds that the motor should turn for. If None is specified, the
motor will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the motor will turn on in the background. Defaults to False. Only
effective if t is not None.

close()

Closes the device and releases any resources. Once closed, the device can no longer be used.

forward(speed=1, t=None, wait=False)
Makes the motor turn “forward”.

Parameters

• speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults
to 1.

• t (float) – The time in seconds that the motor should turn for. If None is specified, the
motor will stay on. The default is None.

5.3. picozero API 45

picozero, Release 0.4.1

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the motor will turn on in the background. Defaults to False. Only
effective if t is not None.

off()

Stops the motor turning.

on(speed=1, t=None, wait=False)
Turns the motor on and makes it turn.

Parameters

• speed (float) – The speed as a value between -1 and 1: 1 turns the motor at full speed in
one direction, -1 turns the motor at full speed in the opposite direction. Defaults to 1.

• t (float) – The time in seconds that the motor should run for. If None is specified, the
motor will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the motor will turn on in the background. Defaults to False. Only
effective if t is not None.

start(speed=1, t=None, wait=False)
Turns the motor on and makes it turn.

Parameters

• speed (float) – The speed as a value between -1 and 1: 1 turns the motor at full speed in
one direction, -1 turns the motor at full speed in the opposite direction. Defaults to 1.

• t (float) – The time in seconds that the motor should run for. If None is specified, the
motor will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the motor will turn on in the background. Defaults to False. Only
effective if t is not None.

stop()

Stops the motor turning.

property pins

Returns a tuple of pins used by the device.

property value

Sets or returns the motor speed as a value between -1 and 1: -1 is full speed “backward”, 1 is full speed
“forward”, 0 is stopped.

5.3.10 Robot / Rover

class picozero.Robot(left, right, pwm=True)
Bases: object

Represents a generic dual-motor robot / rover / buggy.

Alias for Rover.

This class is constructed with two tuples representing the forward and backward pins of the left and right con-
trollers. For example, if the left motor’s controller is connected to pins 12 and 13, while the right motor’s
controller is connected to pins 14 and 15, then the following example will drive the robot forward:

46 Chapter 5. Table of Contents

picozero, Release 0.4.1

from picozero import Robot

robot = Robot(left=(12, 13), right=(14, 15))
robot.forward()

Parameters

• left (tuple) – A tuple of two pins representing the forward and backward inputs of the left
motor’s controller.

• right (tuple) – A tuple of two pins representing the forward and backward inputs of the
right motor’s controller.

• pwm (bool) – If True (the default), pwm pins will be used, allowing variable speed control.

backward(speed=1, t=None, wait=False)
Makes the robot move “backward”.

Parameters

• speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults
to 1.

• t (float) – The time in seconds that the robot should move for. If None is specified, the
robot will continue to move until stopped. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the motor will turn on in the background. Defaults to False. Only
effective if t is not None.

close()

Closes the device and releases any resources. Once closed, the device can no longer be used.

forward(speed=1, t=None, wait=False)
Makes the robot move “forward”.

Parameters

• speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults
to 1.

• t (float) – The time in seconds that the robot should move for. If None is specified, the
robot will continue to move until stopped. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the motor will turn on in the background. Defaults to False. Only
effective if t is not None.

left(speed=1, t=None, wait=False)
Makes the robot turn “left” by turning the left motor backward and the right motor forward.

Parameters

• speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults
to 1.

• t (float) – The time in seconds that the robot should turn for. If None is specified, the
robot will continue to turn until stopped. The default is None.

5.3. picozero API 47

picozero, Release 0.4.1

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the motor will turn on in the background. Defaults to False. Only
effective if t is not None.

right(speed=1, t=None, wait=False)
Makes the robot turn “right” by turning the left motor forward and the right motor backward.

Parameters

• speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults
to 1.

• t (float) – The time in seconds that the robot should turn for. If None is specified, the
robot will continue to turn until stopped. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the motor will turn on in the background. Defaults to False. Only
effective if t is not None.

stop()

Stops the robot.

property left_motor

Returns the left Motor.

property right_motor

Returns the right Motor.

property value

Represents the motion of the robot as a tuple of (left_motor_speed, right_motor_speed) with (-1, -1)
representing full speed backwards, (1, 1) representing full speed forwards, and (0, 0) representing
stopped.

5.3.11 DigitalOutputDevice

class picozero.DigitalOutputDevice(pin, active_high=True, initial_value=False)
Bases: OutputDevice, PinMixin

Represents a device driven by a digital pin.

Parameters

• pin (int) – The pin that the device is connected to.

• active_high (bool) – If True (the default), the on() method will set the Pin to HIGH.
If False, the on() method will set the Pin to LOW (the off() method always does the
opposite).

• initial_value (bool) – If False (the default), the LED will be off initially. If True, the
LED will be switched on initially.

blink(on_time=1, off_time=None, n=None, wait=False)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds that the device will be on. Defaults to
1.

48 Chapter 5. Table of Contents

picozero, Release 0.4.1

• off_time (float) – The length of time in seconds that the device will be off. If None, it
will be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the blink operation. If None is specified, the device
will continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the device stops turning on and off. If
False, the method will return and the device will turn on and off in the background. Defaults
to False.

close()

Closes the device and turns the device off. Once closed, the device can no longer be used.

off()

Turns the device off.

on(value=1, t=None, wait=False)
Turns the device on.

Parameters

• value (float) – The value to set when turning on. Defaults to 1.

• t (float) – The time in seconds that the device should be on. If None is specified, the
device will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the device will turn on in the background. Defaults to False. Only
effective if t is not None.

toggle()

If the device is off, turn it on. If it is on, turn it off.

property active_high

Sets or returns the active_high property. If True, the on()method will set the Pin to HIGH. If False, the
on() method will set the Pin to LOW (the off() method always does the opposite).

property is_active

Returns True if the device is on.

property pin

Returns the pin number used by the device.

property value

Sets or returns a value representing the state of the device: 1 is on, 0 is off.

5.3.12 PWMOutputDevice

class picozero.PWMOutputDevice(pin, freq=100, duty_factor=65535, active_high=True, initial_value=False)
Bases: OutputDevice, PinMixin

Represents a device driven by a PWM pin.

Parameters

• pin (int) – The pin that the device is connected to.

• freq (int) – The frequency of the PWM signal in hertz. Defaults to 100.

• duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and
65535. Defaults to 65535.

5.3. picozero API 49

picozero, Release 0.4.1

• active_high (bool) – If True (the default), the on() method will set the Pin to HIGH.
If False, the on() method will set the Pin to LOW (the off() method always does the
opposite).

• initial_value (bool) – If False (the default), the LED will be off initially. If True, the
LED will be switched on initially.

blink(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)
Makes the device turn on and off repeatedly.

Parameters

• on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

• off_time (float) – The length of time in seconds the device will be off. If None, it will
be the same as on_time. Defaults to None.

• n (int) – The number of times to repeat the blink operation. If None, the device will
continue blinking forever. The default is None.

• wait (bool) – If True, the method will block until the LED stops blinking. If False, the
method will return and the LED will blink in the background. Defaults to False.

• fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

• fade_out_time (float) – The length of time in seconds to spend fading out. If None, it
will be the same as fade_in_time. Defaults to None.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states when fading. Defaults to 25.

close()

Closes the device and turns the device off. Once closed, the device can no longer be used.

off()

Turns the device off.

on(value=1, t=None, wait=False)
Turns the device on.

Parameters

• value (float) – The value to set when turning on. Defaults to 1.

• t (float) – The time in seconds that the device should be on. If None is specified, the
device will stay on. The default is None.

• wait (bool) – If True, the method will block until the time t has expired. If False, the
method will return and the device will turn on in the background. Defaults to False. Only
effective if t is not None.

pulse(fade_in_time=1, fade_out_time=None, n=None, wait=False, fps=25)
Makes the device pulse on and off repeatedly.

Parameters

• fade_in_time (float) – The length of time in seconds that the device will take to turn
on. Defaults to 1.

• fade_out_time (float) – The length of time in seconds that the device will take to turn
off. Defaults to 1.

• fps (int) – The frames per second that will be used to calculate the number of steps
between off/on states. Defaults to 25.

50 Chapter 5. Table of Contents

picozero, Release 0.4.1

• n (int) – The number of times to pulse the LED. If None, the LED will pulse forever.
Defaults to None.

• wait (bool) – If True, the method will block until the LED stops pulsing. If False, the
method will return and the LED will pulse in the background. Defaults to False.

toggle()

If the device is off, turn it on. If it is on, turn it off.

property active_high

Sets or returns the active_high property. If True, the on()method will set the Pin to HIGH. If False, the
on() method will set the Pin to LOW (the off() method always does the opposite).

property freq

Returns the current frequency of the device.

property is_active

Returns True if the device is on.

property pin

Returns the pin number used by the device.

property value

Sets or returns a value representing the state of the device: 1 is on, 0 is off.

5.3.13 Button

class picozero.Button(pin, pull_up=True, bounce_time=0.02)
Bases: Switch

Represents a push button, which can be either pressed or released.

Parameters

• pin (int) – The pin that the device is connected to.

• pull_up (bool) – If True (the default), the device will be pulled up to HIGH. If False,
the device will be pulled down to LOW.

• bounce_time (float) – The bounce time for the device. If set, the device will ignore any
button presses that happen within the bounce time after a button release. This is useful
to prevent accidental button presses from registering as multiple presses. Defaults to 0.02
seconds.

close()

Closes the device and releases any resources. Once closed, the device can no longer be used.

property active_state

Sets or returns the active state of the device. If None (the default), the device will return the value that the
pin is set to. If True, the device will return True if the pin is HIGH. If False, the device will return False
if the pin is LOW.

property is_active

Returns True if the device is active.

property is_closed

Returns True if the device is active.

5.3. picozero API 51

picozero, Release 0.4.1

property is_inactive

Returns True if the device is inactive.

property is_open

Returns True if the device is inactive.

property is_pressed

Returns True if the device is active.

property is_released

Returns True if the device is inactive.

property pin

Returns the pin number used by the device.

property value

Returns the current value of the device. This is either True or False depending on the value of
active_state.

property when_activated

Returns a callback that will be called when the device is activated.

property when_closed

Returns a callback that will be called when the device is activated.

property when_deactivated

Returns a callback that will be called when the device is deactivated.

property when_opened

Returns a callback that will be called when the device is deactivated.

property when_pressed

Returns a callback that will be called when the device is activated.

property when_released

Returns a callback that will be called when the device is deactivated.

5.3.14 Switch

class picozero.Switch(pin, pull_up=True, bounce_time=0.02)
Bases: DigitalInputDevice

Represents a toggle switch, which is either open or closed.

Parameters

• pin (int) – The pin that the device is connected to.

• pull_up (bool) – If True (the default), the device will be pulled up to HIGH. If False,
the device will be pulled down to LOW.

• bounce_time (float) – The bounce time for the device. If set, the device will ignore any
button presses that happen within the bounce time after a button release. This is useful
to prevent accidental button presses from registering as multiple presses. Defaults to 0.02
seconds.

close()

Closes the device and releases any resources. Once closed, the device can no longer be used.

52 Chapter 5. Table of Contents

picozero, Release 0.4.1

property active_state

Sets or returns the active state of the device. If None (the default), the device will return the value that the
pin is set to. If True, the device will return True if the pin is HIGH. If False, the device will return False
if the pin is LOW.

property is_active

Returns True if the device is active.

property is_closed

Returns True if the device is active.

property is_inactive

Returns True if the device is inactive.

property is_open

Returns True if the device is inactive.

property pin

Returns the pin number used by the device.

property value

Returns the current value of the device. This is either True or False depending on the value of
active_state.

property when_activated

Returns a callback that will be called when the device is activated.

property when_closed

Returns a callback that will be called when the device is activated.

property when_deactivated

Returns a callback that will be called when the device is deactivated.

property when_opened

Returns a callback that will be called when the device is deactivated.

5.3.15 Potentiometer / Pot

class picozero.Potentiometer(pin, active_state=True, threshold=0.5)
Bases: AnalogInputDevice

Represents a potentiometer, which outputs a variable voltage between 0 and 3.3V.

Alias for Pot.

Parameters

• pin (int) – The pin that the device is connected to.

• active_state – The active state of the device. If True (the default), the
AnalogInputDevice will assume that the device is active when the pin is high and above
the threshold. If active_state is False, the device will be active when the pin is low and
below the threshold.

• threshold (float) – The threshold that the device must be above or below to be considered
active. The default is 0.5.

5.3. picozero API 53

picozero, Release 0.4.1

property active_state

Sets or returns the active state of the device. If None (the default), the device will return the value that the
pin is set to. If True, the device will return True if the pin is HIGH. If False, the device will return False
if the pin is LOW.

property is_active

Returns True if the device is active.

property pin

Returns the pin number used by the device.

property threshold

The threshold that the device must be above or below to be considered active. The default is 0.5.

property value

Returns the current value of the device. This is either True or False depending on the value of
active_state.

property voltage

Returns the voltage of the analogue device.

5.3.16 TemperatureSensor / TempSensor / Thermistor

class picozero.TemperatureSensor(pin, active_state=True, threshold=0.5, conversion=None)
Bases: AnalogInputDevice

Represents a TemperatureSensor, which outputs a variable voltage. The voltage can be converted to a temperature
using a conversion function passed as a parameter.

Alias for Thermistor and TempSensor.

Parameters

• pin (int) – The pin that the device is connected to.

• active_state – The active state of the device. If True (the default), the
AnalogInputDevice will assume that the device is active when the pin is high and above
the threshold. If active_state is False, the device will be active when the pin is low and
below the threshold.

• threshold (float) – The threshold that the device must be above or below to be considered
active. The default is 0.5.

• conversion (float) – A function that takes a voltage and returns a temperature.

e.g. The internal temperature sensor has a voltage range of 0.706V to 0.716V and would use
the follow conversion function:

def temp_conversion(voltage):
return 27 - (voltage - 0.706)/0.001721

temp_sensor = TemperatureSensor(pin, conversion=temp_conversion)

If None (the default), the temp property will return None.

property active_state

Sets or returns the active state of the device. If None (the default), the device will return the value that the
pin is set to. If True, the device will return True if the pin is HIGH. If False, the device will return False
if the pin is LOW.

54 Chapter 5. Table of Contents

picozero, Release 0.4.1

property conversion

Sets or returns the conversion function for the device.

property is_active

Returns True if the device is active.

property pin

Returns the pin number used by the device.

property temp

Returns the temperature of the device. If the conversion function is not set, this will return None.

property threshold

The threshold that the device must be above or below to be considered active. The default is 0.5.

property value

Returns the current value of the device. This is either True or False depending on the value of
active_state.

property voltage

Returns the voltage of the analogue device.

5.3.17 DistanceSensor

class picozero.DistanceSensor(echo, trigger, max_distance=1)
Bases: PinsMixin

Represents a HC-SR04 ultrasonic distance sensor.

Parameters

• echo (int) – The pin that the ECHO pin is connected to.

• trigger (int) – The pin that the TRIG pin is connected to.

• max_distance (float) – The value attribute reports a normalized value between 0 (too
close to measure) and 1 (maximum distance). This parameter specifies the maximum dis-
tance expected in meters. This defaults to 1.

property distance

Returns the current distance measured by the sensor in meters. Note that this property will have a value
between 0 and max_distance.

property max_distance

Returns the maximum distance that the sensor will measure in metres.

property pins

Returns a tuple of pins used by the device.

property value

Returns a value between 0, indicating the reflector is either touching the sensor or is sufficiently near that
the sensor can’t tell the difference, and 1, indicating the reflector is at or beyond the specified max_distance.
A return value of None indicates that the echo was not received before the timeout.

5.3. picozero API 55

picozero, Release 0.4.1

5.3.18 DigitalInputDevice

class picozero.DigitalInputDevice(pin, pull_up=False, active_state=None, bounce_time=None)
Bases: InputDevice, PinMixin

Represents a generic input device with digital functionality e.g. buttons that can be either active or inactive.

Parameters

• pin (int) – The pin that the device is connected to.

• pull_up (bool) – If True, the device will be pulled up to HIGH. If False (the default),
the device will be pulled down to LOW.

• active_state (bool) – If True (the default), the device will return True if the pin is
HIGH. If False, the device will return False if the pin is LOW.

• bounce_time (float) – The bounce time for the device. If set, the device will ignore any
button presses that happen within the bounce time after a button release. This is useful to
prevent accidental button presses from registering as multiple presses. The default is None.

close()

Closes the device and releases any resources. Once closed, the device can no longer be used.

property active_state

Sets or returns the active state of the device. If None (the default), the device will return the value that the
pin is set to. If True, the device will return True if the pin is HIGH. If False, the device will return False
if the pin is LOW.

property is_active

Returns True if the device is active.

property is_inactive

Returns True if the device is inactive.

property pin

Returns the pin number used by the device.

property value

Returns the current value of the device. This is either True or False depending on the value of
active_state.

property when_activated

Returns a callback that will be called when the device is activated.

property when_deactivated

Returns a callback that will be called when the device is deactivated.

5.3.19 pinout

picozero.pinout(output=True)
Returns a textual representation of the Raspberry Pi pico pins and functions.

Parameters
output (bool) – If True (the default) the pinout will be “printed”.

56 Chapter 5. Table of Contents

picozero, Release 0.4.1

5.4 Development

Instructions on how build and deploy picozero.

5.4.1 Pre-requisites

To build and deploy picozero, you need to install the dependencies

pip3 install twine sphinx

5.4.2 Build

1. Update version numbers in the setup.py, picozero/__init__.py, and docs/conf.py files

2. Add release to docs/changelog.rst

3. Run setup.py and create a source distribution

python3 setup.py sdist

4. Upload to PyPI

twine upload dist/*

5. Push all changes to master branch

6. Create a release in github and upload picozero-#-#-#.tar.gz source file to the release

5.4.3 Documentation

The documentation site is built using Sphinx.

Install sphinx using

pip3 install sphinx

To test the documentation build, run the following command from the docs directory

$./make html

The website will be built in the directory docs/_build/html.

Documentation can be viewed at picozero.readthedocs.io and is automatically built and deployed on push to github.

5.4. Development 57

https://github.com/RaspberryPiFoundation/picozero/releases
https://picozero.readthedocs.io

picozero, Release 0.4.1

5.4.4 Tests

The tests are designed to be run on a Raspberry Pi Pico.

1. Install the picozero package

2. Install the micropython-unittest package

3. Copy the test_picozero.py file to the Pico

4. Run the test_picozero.py file

If a test fails, it is helpful to be able to see verbose error messages. To see error messages, you need to modify the
lib/unittest.py file on the Pico.

Locate the following code in the run_class function:

Uncomment to investigate failure in detail
#raise

Uncomment raise:

Uncomment to investigate failure in detail
raise

5.5 Contributing

Contributions to picozero are welcome. Please keep in mind that picozero is ‘lightweight’. It is designed to be easy
to use but also needs to run on a microcontroller; please take this into account when considering feature requests or
raising issues.

For more details, please see the following advice.

5.5.1 Status

As picozero is currently in Beta, pre-release 1.0, you should consider the following:

• The API is not yet set, however, this doesn’t mean that backwards compatibility is not important! It is a balancing
act.

• Requests for new features will need to be prioritised and responses to feature requests may take some time.

• Refactoring of the code base is very likely and, as a result, pull requests may need rework.

• Issues are likely to exist within the code base. Be kind!

5.5.2 Suggestions

If you have an idea for a new feature or would like to see a device included in picozero, please raise an issue. Please
explain your reasoning clearly.

58 Chapter 5. Table of Contents

https://pypi.org/project/picozero/
https://pypi.org/project/micropython-unittest/
https://github.com/RaspberryPiFoundation/picozero/issues

picozero, Release 0.4.1

5.5.3 Bugs

Please raise an issue for any bugs found. Please include code examples and circuit diagrams if appropriate.

5.5.4 Pull requests

All pull requests should be based on the dev branch of picozero.

5.6 Change log

5.6.1 0.4.1 - 2022-12-22

• Introduced pinout()

• Bug fix with DigitalInputDevice.when_deactivated decorator

• Documentation tidy up and minor fixes

5.6.2 0.4.0 - 2022-11-18

• Introduced Servo class

• Documentation fixes

5.6.3 0.3.0 - 2022-08-12

• Introduced Motor, Robot, and DistanceSensor classes.

• Renamed LED factory use_pwm parameter to pwm to match other classes. Note: This is an API breaking change.

• Resolved issue with RGBLED when not using pwm.

• Resolved issue where blink / pulse rates of 0 raised a traceback error.

• Other minor bug fixes.

• Documentation updates.

5.6.4 0.2.0 - 2022-06-29

• Pico W compatibility fix for onboard LED.

5.6.5 0.1.1 - 2022-06-08

• Minor fixes for bugs found during testing.

• Small improvements to exception messages.

• Added close methods to Speaker and PWMOutputDevice.

• Added unit tests.

• Added RGBLED.colour as an alias to RGBLED.color.

5.6. Change log 59

https://github.com/RaspberryPiFoundation/picozero/issues
https://github.com/RaspberryPiFoundation/picozero/tree/dev

picozero, Release 0.4.1

5.6.6 0.1.0 - 2022-04-08

• Beta release.

• Documentation updates.

• Minor bug fixes and refactoring.

5.6.7 0.0.2 - 2022-03-31

• Bug fixes and documentation updates.

5.6.8 0.0.1 - 2022-03-21

• Initial alpha release to test installation process.

60 Chapter 5. Table of Contents

PYTHON MODULE INDEX

p
picozero, 31

61

picozero, Release 0.4.1

62 Python Module Index

INDEX

A
active_high (picozero.Buzzer property), 38
active_high (picozero.DigitalLED property), 32
active_high (picozero.DigitalOutputDevice property),

49
active_high (picozero.PWMBuzzer property), 40
active_high (picozero.PWMLED property), 34
active_high (picozero.PWMOutputDevice property),

51
active_high (picozero.RGBLED property), 36
active_high (picozero.Servo property), 44
active_high (picozero.Speaker property), 42
active_state (picozero.Button property), 51
active_state (picozero.DigitalInputDevice property),

56
active_state (picozero.Potentiometer property), 53
active_state (picozero.Switch property), 52
active_state (picozero.TemperatureSensor property),

54

B
backward() (picozero.Motor method), 45
backward() (picozero.Robot method), 47
beep() (picozero.Buzzer method), 37
beep() (picozero.PWMBuzzer method), 39
beep() (picozero.Speaker method), 41
blink() (picozero.Buzzer method), 38
blink() (picozero.DigitalLED method), 32
blink() (picozero.DigitalOutputDevice method), 48
blink() (picozero.PWMBuzzer method), 39
blink() (picozero.PWMLED method), 33
blink() (picozero.PWMOutputDevice method), 50
blink() (picozero.RGBLED method), 35
blink() (picozero.Servo method), 43
blink() (picozero.Speaker method), 41
blue (picozero.RGBLED property), 36
brightness (picozero.PWMLED property), 34
Button (class in picozero), 51
Buzzer (class in picozero), 37

C
close() (picozero.Button method), 51

close() (picozero.Buzzer method), 38
close() (picozero.DigitalInputDevice method), 56
close() (picozero.DigitalLED method), 32
close() (picozero.DigitalOutputDevice method), 49
close() (picozero.Motor method), 45
close() (picozero.PWMBuzzer method), 40
close() (picozero.PWMLED method), 33
close() (picozero.PWMOutputDevice method), 50
close() (picozero.RGBLED method), 35
close() (picozero.Robot method), 47
close() (picozero.Servo method), 44
close() (picozero.Speaker method), 42
close() (picozero.Switch method), 52
color (picozero.RGBLED property), 36
colour (picozero.RGBLED property), 36
conversion (picozero.TemperatureSensor property), 55
cycle() (picozero.RGBLED method), 35

D
DigitalInputDevice (class in picozero), 56
DigitalLED (class in picozero), 32
DigitalOutputDevice (class in picozero), 48
distance (picozero.DistanceSensor property), 55
DistanceSensor (class in picozero), 55

F
forward() (picozero.Motor method), 45
forward() (picozero.Robot method), 47
freq (picozero.PWMBuzzer property), 40
freq (picozero.PWMLED property), 34
freq (picozero.PWMOutputDevice property), 51
freq (picozero.Servo property), 45
freq (picozero.Speaker property), 42

G
green (picozero.RGBLED property), 37

I
invert() (picozero.RGBLED method), 36
is_active (picozero.Button property), 51
is_active (picozero.Buzzer property), 38
is_active (picozero.DigitalInputDevice property), 56

63

picozero, Release 0.4.1

is_active (picozero.DigitalLED property), 32
is_active (picozero.DigitalOutputDevice property), 49
is_active (picozero.Potentiometer property), 54
is_active (picozero.PWMBuzzer property), 40
is_active (picozero.PWMLED property), 34
is_active (picozero.PWMOutputDevice property), 51
is_active (picozero.RGBLED property), 37
is_active (picozero.Servo property), 45
is_active (picozero.Speaker property), 43
is_active (picozero.Switch property), 53
is_active (picozero.TemperatureSensor property), 55
is_closed (picozero.Button property), 51
is_closed (picozero.Switch property), 53
is_inactive (picozero.Button property), 51
is_inactive (picozero.DigitalInputDevice property),

56
is_inactive (picozero.Switch property), 53
is_lit (picozero.DigitalLED property), 33
is_lit (picozero.RGBLED property), 37
is_open (picozero.Button property), 52
is_open (picozero.Switch property), 53
is_pressed (picozero.Button property), 52
is_released (picozero.Button property), 52

L
LED() (in module picozero), 31
left() (picozero.Robot method), 47
left_motor (picozero.Robot property), 48

M
max() (picozero.Servo method), 44
max_distance (picozero.DistanceSensor property), 55
mid() (picozero.Servo method), 44
min() (picozero.Servo method), 44
module

picozero, 31
Motor (class in picozero), 45

O
off() (picozero.Buzzer method), 38
off() (picozero.DigitalLED method), 32
off() (picozero.DigitalOutputDevice method), 49
off() (picozero.Motor method), 46
off() (picozero.PWMBuzzer method), 40
off() (picozero.PWMLED method), 33
off() (picozero.PWMOutputDevice method), 50
off() (picozero.RGBLED method), 36
off() (picozero.Servo method), 44
off() (picozero.Speaker method), 42
on() (picozero.Buzzer method), 38
on() (picozero.DigitalLED method), 32
on() (picozero.DigitalOutputDevice method), 49
on() (picozero.Motor method), 46

on() (picozero.PWMBuzzer method), 40
on() (picozero.PWMLED method), 34
on() (picozero.PWMOutputDevice method), 50
on() (picozero.RGBLED method), 36
on() (picozero.Servo method), 44
on() (picozero.Speaker method), 42

P
picozero

module, 31
pin (picozero.Button property), 52
pin (picozero.Buzzer property), 38
pin (picozero.DigitalInputDevice property), 56
pin (picozero.DigitalLED property), 33
pin (picozero.DigitalOutputDevice property), 49
pin (picozero.Potentiometer property), 54
pin (picozero.PWMBuzzer property), 40
pin (picozero.PWMLED property), 34
pin (picozero.PWMOutputDevice property), 51
pin (picozero.Servo property), 45
pin (picozero.Speaker property), 43
pin (picozero.Switch property), 53
pin (picozero.TemperatureSensor property), 55
pinout() (in module picozero), 56
pins (picozero.DistanceSensor property), 55
pins (picozero.Motor property), 46
pins (picozero.RGBLED property), 37
play() (picozero.Speaker method), 42
Potentiometer (class in picozero), 53
pulse() (picozero.PWMBuzzer method), 40
pulse() (picozero.PWMLED method), 34
pulse() (picozero.PWMOutputDevice method), 50
pulse() (picozero.RGBLED method), 36
pulse() (picozero.Servo method), 44
PWMBuzzer (class in picozero), 39
PWMLED (class in picozero), 33
PWMOutputDevice (class in picozero), 49

R
red (picozero.RGBLED property), 37
RGBLED (class in picozero), 35
right() (picozero.Robot method), 48
right_motor (picozero.Robot property), 48
Robot (class in picozero), 46

S
Servo (class in picozero), 43
Speaker (class in picozero), 41
start() (picozero.Motor method), 46
stop() (picozero.Motor method), 46
stop() (picozero.Robot method), 48
Switch (class in picozero), 52

64 Index

picozero, Release 0.4.1

T
temp (picozero.TemperatureSensor property), 55
TemperatureSensor (class in picozero), 54
threshold (picozero.Potentiometer property), 54
threshold (picozero.TemperatureSensor property), 55
toggle() (picozero.Buzzer method), 38
toggle() (picozero.DigitalLED method), 32
toggle() (picozero.DigitalOutputDevice method), 49
toggle() (picozero.PWMBuzzer method), 40
toggle() (picozero.PWMLED method), 34
toggle() (picozero.PWMOutputDevice method), 51
toggle() (picozero.RGBLED method), 36
toggle() (picozero.Servo method), 44
toggle() (picozero.Speaker method), 42

V
value (picozero.Button property), 52
value (picozero.Buzzer property), 38
value (picozero.DigitalInputDevice property), 56
value (picozero.DigitalLED property), 33
value (picozero.DigitalOutputDevice property), 49
value (picozero.DistanceSensor property), 55
value (picozero.Motor property), 46
value (picozero.Potentiometer property), 54
value (picozero.PWMBuzzer property), 40
value (picozero.PWMLED property), 34
value (picozero.PWMOutputDevice property), 51
value (picozero.RGBLED property), 37
value (picozero.Robot property), 48
value (picozero.Servo property), 45
value (picozero.Speaker property), 43
value (picozero.Switch property), 53
value (picozero.TemperatureSensor property), 55
voltage (picozero.Potentiometer property), 54
voltage (picozero.TemperatureSensor property), 55
volume (picozero.PWMBuzzer property), 41
volume (picozero.Speaker property), 43

W
when_activated (picozero.Button property), 52
when_activated (picozero.DigitalInputDevice prop-

erty), 56
when_activated (picozero.Switch property), 53
when_closed (picozero.Button property), 52
when_closed (picozero.Switch property), 53
when_deactivated (picozero.Button property), 52
when_deactivated (picozero.DigitalInputDevice prop-

erty), 56
when_deactivated (picozero.Switch property), 53
when_opened (picozero.Button property), 52
when_opened (picozero.Switch property), 53
when_pressed (picozero.Button property), 52
when_released (picozero.Button property), 52

Index 65

	Status
	Documentation
	Code
	Thanks
	Table of Contents
	Getting started
	Install using Thonny
	Requirements
	Select the MicroPython interpreter
	Install picozero from PyPI in Thonny

	Manual install
	Copy picozero.py using Thonny

	Write a program to control the onboard LED
	Run the program on your computer
	Run the program on your Raspberry Pi Pico

	Recipes
	Importing picozero
	Pico LED
	Pin out
	LEDs
	Flash
	Brightness

	Buttons
	RGB LEDs
	Blink
	Pulse
	Cycle

	Potentiometer
	Buzzer
	Speaker
	Play a tune
	Play individual notes

	Servo
	Motor
	Robot rover
	Internal temperature sensor
	Ultrasonic distance sensor

	picozero API
	LED
	DigitalLED
	PWMLED
	RGBLED
	Buzzer
	PWMBuzzer
	Speaker
	Servo
	Motor
	Robot / Rover
	DigitalOutputDevice
	PWMOutputDevice
	Button
	Switch
	Potentiometer / Pot
	TemperatureSensor / TempSensor / Thermistor
	DistanceSensor
	DigitalInputDevice
	pinout

	Development
	Pre-requisites
	Build
	Documentation
	Tests

	Contributing
	Status
	Suggestions
	Bugs
	Pull requests

	Change log
	0.4.1 - 2022-12-22
	0.4.0 - 2022-11-18
	0.3.0 - 2022-08-12
	0.2.0 - 2022-06-29
	0.1.1 - 2022-06-08
	0.1.0 - 2022-04-08
	0.0.2 - 2022-03-31
	0.0.1 - 2022-03-21

	Python Module Index
	Index

