

picozero

[image: Latest Version] [https://badge.fury.io/py/picozero] [image: Docs] [https://readthedocs.org/projects/picozero/]

A beginner-friendly library to help you use common electronics components with the Raspberry Pi Pico.

from picozero import LED, Button

led = LED(1)
button = Button(2)

button.when_pressed = led.on
button.when_released = led.off

Status

Beta. There will be bugs and issues. API changes are likely. More devices will be added over time.

Documentation

Documentation is available at picozero.readthedocs.io [https://picozero.readthedocs.io]:

	Installation and getting started guide [https://picozero.readthedocs.io/en/latest/gettingstarted.html]

	Recipes and how-to’s [https://picozero.readthedocs.io/en/latest/recipes.html]

	API [https://picozero.readthedocs.io/en/latest/api.html]

	Example code [https://github.com/RaspberryPiFoundation/picozero/tree/master/docs/examples]

Code

The code and project is at github.com/RaspberryPiFoundation/picozero [https://github.com/RaspberryPiFoundation/picozero].

Issues can be raised at github.com/RaspberryPiFoundation/picozero/issues [https://github.com/RaspberryPiFoundation/picozero/issues] (see Contributing [https://picozero.readthedocs.io/en/latest/contributing.html]).

The latest distribution is available at pypi.org/project/picozero/ [https://pypi.org/project/picozero/].

Thanks

picozero is inspired by gpiozero [https://gpiozero.readthedocs.io/en/stable/] (and reuses some of its underlying structure), but is, by design, lighter weight and aligned with the Raspberry Pi Pico. Thank you to everyone who has contributed to the gpiozero project.

Table of Contents

Contents:

	Getting started
	Install using Thonny

	Manual install

	Write a program to control the onboard LED

	Recipes
	Importing picozero

	Pico LED

	Pin out

	LEDs

	Buttons

	RGB LEDs

	Potentiometer

	Buzzer

	Speaker

	Servo

	Motor

	Robot rover

	Internal temperature sensor

	Ultrasonic distance sensor

	picozero API
	LED

	DigitalLED

	PWMLED

	RGBLED

	Buzzer

	PWMBuzzer

	Speaker

	Servo

	Motor

	Robot / Rover

	DigitalOutputDevice

	PWMOutputDevice

	Button

	Switch

	Potentiometer / Pot

	TemperatureSensor / TempSensor / Thermistor

	DistanceSensor

	DigitalInputDevice

	pinout

	Development
	Pre-requisites

	Build

	Documentation

	Tests

	Contributing
	Status

	Suggestions

	Bugs

	Pull requests

	Change log
	0.4.1 - 2022-12-22

	0.4.0 - 2022-11-18

	0.3.0 - 2022-08-12

	0.2.0 - 2022-06-29

	0.1.1 - 2022-06-08

	0.1.0 - 2022-04-08

	0.0.2 - 2022-03-31

	0.0.1 - 2022-03-21

Getting started

Install using Thonny

Requirements

A Windows, macOS, or Linux computer with the Thonny Python IDE [https://thonny.org/] installed.

You can find information on how to install Thonny in the Introduction to Raspberry Pi Pico guide [https://learning-admin.raspberrypi.org/en/projects/introduction-to-the-pico/2].

Once Thonny is installed, you will need to ensure that you are using the latest MicroPython firmware. Details on how to install or update the Raspberry Pi Pico MicroPython firmware can be found in the Pico guide [https://learning-admin.raspberrypi.org/en/projects/introduction-to-the-pico/3].

Select the MicroPython interpreter

You can change which interpreter you are using in Thonny by selecting the desired option at the bottom right of the screen. Make sure that MicroPython (Raspberry Pi Pico) is selected.

[image: Selecting MicroPython (Raspberry Pi Pico) from the interpreter menu in the bottom right of the Thonny IDE]

Install picozero from PyPI in Thonny

To install picozero within Thonny, select Tools > Manage packages…

[image: Selecting Manage Packages from the Tools menu in Thonny]
Search for picozero on PyPI.

[image: picozero entered in the Search box of the Manage Packages window in Thonny]
Click on install to download the package.

[image: Information about the picozero package shown in the Manage Packages window]

Manual install

picozero can be installed by copying the picozero.py code to your Raspberry Pi Pico.

Either clone the picozero GitHub repository [https://github.com/RaspberryPiFoundation/picozero] or copy the code from the picozero.py [https://raw.githubusercontent.com/RaspberryPiFoundation/picozero/master/picozero/picozero.py?token=GHSAT0AAAAAABRLTKWZDBSYBE54NJ7AIZ6MYSENI2A] file and save it on your main computer.

Create a new file called picozero.py, copy code into the file and save it on your Raspberry Pi Pico.

Copy picozero.py using Thonny

Alternatively, you can use the Thonny file manager to transfer the picozero.py file to your Raspberry Pi Pico.

In the View menu, ensure that the Files option has a tick. This will let you see the files.

[image: The Files option selected from the View menu]
Either clone the picozero GitHub repository [https://github.com/RaspberryPiFoundation/picozero] or copy the code from the picozero.py [https://raw.githubusercontent.com/RaspberryPiFoundation/picozero/master/picozero/picozero.py?token=GHSAT0AAAAAABRLTKWZDBSYBE54NJ7AIZ6MYSENI2A] file and save it on your main computer.

In Thonny, navigate to the cloned directory or location you saved the file in and find the picozero.py file.

[image: _images/thonny-navigate-downloads.jpg]
Right click on the file and select the Upload to / option. You should see a copy of the picozero.py file on the Raspberry Pi Pico.

[image: The "Upload to /" option selected in the picozero.py file menu]
[image: The picozero.py file shown in the Raspberry Pi Pico file viewer.]

Write a program to control the onboard LED

The following code will blink the onboard LED at a frequency of once per second.:

from picozero import pico_led
from time import sleep

while True:
 pico_led.on()
 sleep(0.5)
 pico_led.off()
 sleep(0.5)

Run the program on your computer

You can choose to run the program from your computer.

Click on the Run current script button.

[image: _images/run-current-script.jpg]
Choose to save the script on This computer and provide a filename.

[image: _images/save-this-computer.png]

Run the program on your Raspberry Pi Pico

You can choose to run the program from the Raspberry Pi Pico.

Click on the Run current script button.

[image: _images/run-current-script.jpg]
Choose to save the script on Raspberry Pi Pico and provide a filename.

[image: _images/save-this-raspberry-pi-pico.png]
If you call the file main.py, it will run automatically when the Pico is powered on.

Recipes

The recipes provide examples of how you can use picozero.

Importing picozero

You will need add an import line to the top of your script to use picozero.

You can import just what you need, separating items with a comma ,:

from picozero import pico_led, LED

Now you can use pico_led and LED in your script:

pico_led.on() # Turn on the LED on the Raspberry Pi Pico
led = LED(14) # Control an LED connected to pin GP14
led.on()

Alternatively, the whole picozero library can be imported:

import picozero

In this case, all references to picozero items must be prefixed:

picozero.pico_led.on()
led = picozero.LED(14)

Pico LED

[image: A diagram of the Raspberry Pi Pico with a GP25 label attached to the onboard LED.]To turn on the LED on your Raspberry Pi Pico:

from picozero import pico_led

pico_led.on()

Run your script to see the LED turn on.

Using the pico_led is equivalent to:

pico_led = LED(25)

You can use pico_led in the same way as external LEDs created using LED.

Pin out

You can output a diagram of the Raspberry Pi Pico which displays its pins and their numbers.

from picozero import pinout

pinout()

 ---usb---
GP0 1 |o o| -1 VBUS
GP1 2 |o o| -2 VSYS
GND 3 |o o| -3 GND
GP2 4 |o o| -4 3V3_EN
GP3 5 |o o| -5 3V3(OUT)
GP4 6 |o o| -6 ADC_VREF
GP5 7 |o o| -7 GP28 ADC2
GND 8 |o o| -8 GND AGND
GP6 9 |o o| -9 GP27 ADC1
GP7 10 |o o| -10 GP26 ADC0
GP8 11 |o o| -11 RUN
GP9 12 |o o| -12 GP22
GND 13 |o o| -13 GND
GP10 14 |o o| -14 GP21
GP11 15 |o o| -15 GP20
GP12 16 |o o| -16 GP19
GP13 17 |o o| -17 GP18
GND 18 |o o| -18 GND
GP14 19 |o o| -19 GP17
GP15 20 |o o| -20 GP16

LEDs

[image: A diagram of the Raspberry Pi Pico with a yellow LED connected to GP14 and GND.]You can control external LEDs with a Raspberry Pi Pico.

Flash

Turn an LED on and off:

from picozero import LED
from time import sleep

led = LED(14)

led.on()
sleep(1)
led.off()

Toggle an LED to turn it from on to off or off to on:

from picozero import LED
from time import sleep

led = LED(14)

while True:
 led.toggle()
 sleep(1)

Alternatively, you can use the blink() method.

from picozero import LED

led = LED(14)

led.blink()

Brightness

Set the brightness of an LED:

from picozero import LED
from time import sleep

led = LED(14)

while True:
 led.brightness = 0 # off
 sleep(1)
 led.brightness = 0.5 # half brightness
 sleep(1)
 led.brightness = 1 # full brightness
 sleep(1)

Create a pulse effect:

from picozero import LED
from time import sleep
from math import sin, radians

led = LED(14)

while True:
 for i in range(360):
 angle = radians(i)
 led.brightness = 0.5 + 0.5 * sin(angle)
 sleep(0.01)

Alternatively, you can use the pulse() method.

from picozero import LED

led = LED(14)

led.pulse()

Buttons

You can connect buttons and switches to a Raspberry Pi Pico and detect when they are pressed.

Check if a Button is pressed:

from picozero import Button
from time import sleep

button = Button(18)

while True:
 if button.is_pressed:
 print("Button is pressed")
 else:
 print("Button is not pressed")
 sleep(0.1)

Run a function every time a Button is pressed:

from picozero import Button, pico_led
from time import sleep

button = Button(18)

def led_on_off():
 pico_led.on()
 sleep(1)
 pico_led.off()

button.when_pressed = led_on_off

Note

The line button.when_pressed = led_on_off does not run the
function led_on_off, rather it creates a reference to the function to be
called when the button is pressed. Accidental use of button.when_pressed
= led_on_off() would set the when_pressed action to None (the
return value of this function), which would mean nothing happens when the
button is pressed.

Turn the pico_led on when a Button is pressed and off when it is released:

from picozero import Button, pico_led

button = Button(18)

button.when_pressed = pico_led.on
button.when_released = pico_led.off

RGB LEDs

Set colours with an RGBLED:

from picozero import RGBLED
from time import sleep

rgb = RGBLED(red=2, green=1, blue=0)

rgb.red = 255 # full red
sleep(1)
rgb.red = 128 # half red
sleep(1)

rgb.on() # white

rgb.color = (0, 255, 0) # full green
sleep(1)
rgb.color = (255, 0, 255) # magenta
sleep(1)
rgb.color = (255, 255, 0) # yellow
sleep(1)
rgb.color = (0, 255, 255) # cyan
sleep(1)
rgb.color = (255, 255, 255) # white
sleep(1)

rgb.color = (0, 0, 0) # off
sleep(1)

slowly increase intensity of blue
for n in range(255):
 rgb.blue = n
 sleep(0.01)

rgb.off()

Use toggle() and invert():

from picozero import RGBLED
from time import sleep

rgb = RGBLED(red=2, green=1, blue=0)

rgb.color = (255, 165, 0) # orange
sleep(1)

for _ in range(6):
 rgb.toggle()
 sleep(1)

for _ in range(6):
 rgb.invert()
 sleep(1)

rgb.off()

Blink

Use blink() blink to change between colours. You can control which colours are used and how long the LED is set to each colour. The colour (0, 0, 0) represents off.

You can control whether blink() runs a fixed number of times and whether it waits until it has finished or returns immediately so other code can run.

from picozero import RGBLED
from time import sleep

rgb = RGBLED(1, 2, 3)

rgb.blink() # does not wait
sleep(6)
rgb.off()
sleep(1)

blink purple 2 seconds, off 0.5 seconds
rgb.blink(on_times=(2, 0.5), colors=((1, 0, 1), (0, 0, 0)), wait=True, n=3)

rgb.off()
sleep(1)

blink red 1 second, green 0.5 seconds, blue 0.25 seconds
rgb.blink((1, 0.5, 0.25), colors=((1, 0, 0), (0, 1, 0), (0, 0, 1)), wait=True, n=2)

Pulse

Use pulse() to gradually change the LED colour. The default will pulse between red and off, then green and off, then blue and off.

from picozero import RGBLED
from time import sleep

rgb = RGBLED(1, 2, 3)

rgb.pulse() # does not wait
sleep(6)
rgb.off()
sleep(1)

2 second to fade from purple to off, 0.5 seconds to change from off to purple
rgb.pulse(fade_times=(2, 0.5), colors=((1, 0, 1), (0, 0, 0)), wait=True, n=3)

rgb.off()
sleep(1)

4 seconds to change from red to green, 2 to change from green to blue, then 1 to change from blue back to red
rgb.pulse((4, 2, 1), colors=((1, 0, 0), (0, 1, 0), (0, 0, 1)), wait=True, n=2)

Cycle

The default for cycle() is to cycle from red to green, then green to blue, then blue to red.

from picozero import RGBLED
from time import sleep

rgb = RGBLED(1, 2, 3)

Gradually colour cycle through colours between red and green, green and blue then blue and red
rgb.cycle()
sleep(4)
rgb.off()
sleep(1)

Colour cycle slower in the opposite direction
rgb.cycle(fade_times=3, colors=((0, 0, 1), (0, 1, 0), (1, 0, 0)), wait=True, n=2)
rgb.off()

Potentiometer

Print the value, voltage, and percent reported by a potentiometer:

Potentiometer connected to GP26 (ADC0), GND and 3V

from time import sleep
from pico import Pot

pot = Pot(26)

while True:
 print(pot.value, pot.voltage)
 sleep(0.1)

Note

In the Thonny Python editor, choose View > Plotter to plot the output of print().

Use a potentiometer to control the brightness of an LED:

from picozero import Pot, LED

Potentiometer connected to GP26 (ADC0), GND and 3V
LED connected to GP0

pot = Pot(26)
led = LED(0)

while True:
 led.value = pot.value

Buzzer

Control an active buzzer that plays a note when powered:

Active Buzzer that plays a note when powered
from time import sleep
from picozero import Buzzer

buzzer = Buzzer(10)

buzzer.on()
sleep(1)
buzzer.off()
sleep(1)

buzzer.beep()
sleep(4)
buzzer.off()

Speaker

Control a passive buzzer or speaker that can play different tones or frequencies:

from picozero import Speaker
from time import sleep

speaker = Speaker(5)

def tada():
 c_note = 523
 speaker.play(c_note, 0.1)
 sleep(0.1)
 speaker.play(c_note, 0.9)

def chirp():
 global speaker
 for _ in range(5):
 for i in range(5000, 2999, -100):
 speaker.play(i, 0.01)
 sleep(0.2)

try:
 tada()
 sleep(1)
 chirp()

finally: # Turn the speaker off if interrupted
 speaker.off()

Play a tune

Play a tune of note names and durations in beats:

from picozero import Speaker

speaker = Speaker(5)

BEAT = 0.25 # 240 BPM

liten_mus = [['d5', BEAT / 2], ['d#5', BEAT / 2], ['f5', BEAT], ['d6', BEAT], ['a#5', BEAT], ['d5', BEAT],
 ['f5', BEAT], ['d#5', BEAT], ['d#5', BEAT], ['c5', BEAT / 2],['d5', BEAT / 2], ['d#5', BEAT],
 ['c6', BEAT], ['a5', BEAT], ['d5', BEAT], ['g5', BEAT], ['f5', BEAT], ['f5', BEAT], ['d5', BEAT / 2],
 ['d#5', BEAT / 2], ['f5', BEAT], ['g5', BEAT], ['a5', BEAT], ['a#5', BEAT], ['a5', BEAT], ['g5', BEAT],
 ['g5', BEAT], ['', BEAT / 2], ['a#5', BEAT / 2], ['c6', BEAT / 2], ['d6', BEAT / 2], ['c6', BEAT / 2],
 ['a#5', BEAT / 2], ['a5', BEAT / 2], ['g5', BEAT / 2], ['a5', BEAT / 2], ['a#5', BEAT / 2], ['c6', BEAT],
 ['f5', BEAT], ['f5', BEAT], ['f5', BEAT / 2], ['d#5', BEAT / 2], ['d5', BEAT], ['f5', BEAT], ['d6', BEAT],
 ['d6', BEAT / 2], ['c6', BEAT / 2], ['b5', BEAT], ['g5', BEAT], ['g5', BEAT], ['c6', BEAT / 2],
 ['a#5', BEAT / 2], ['a5', BEAT], ['f5', BEAT], ['d6', BEAT], ['a5', BEAT], ['a#5', BEAT * 1.5]]

try:
 speaker.play(liten_mus)

finally: # Turn speaker off if interrupted
 speaker.off()

Play individual notes

Play individual notes and control the timing or perform another action:

from picozero import Speaker
from time import sleep

speaker = Speaker(5)

BEAT = 0.4

liten_mus = [['d5', BEAT / 2], ['d#5', BEAT / 2], ['f5', BEAT], ['d6', BEAT], ['a#5', BEAT], ['d5', BEAT],
 ['f5', BEAT], ['d#5', BEAT], ['d#5', BEAT], ['c5', BEAT / 2],['d5', BEAT / 2], ['d#5', BEAT],
 ['c6', BEAT], ['a5', BEAT], ['d5', BEAT], ['g5', BEAT], ['f5', BEAT], ['f5', BEAT], ['d5', BEAT / 2],
 ['d#5', BEAT / 2], ['f5', BEAT], ['g5', BEAT], ['a5', BEAT], ['a#5', BEAT], ['a5', BEAT], ['g5', BEAT],
 ['g5', BEAT], ['', BEAT / 2], ['a#5', BEAT / 2], ['c6', BEAT / 2], ['d6', BEAT / 2], ['c6', BEAT / 2],
 ['a#5', BEAT / 2], ['a5', BEAT / 2], ['g5', BEAT / 2], ['a5', BEAT / 2], ['a#5', BEAT / 2], ['c6', BEAT],
 ['f5', BEAT], ['f5', BEAT], ['f5', BEAT / 2], ['d#5', BEAT / 2], ['d5', BEAT], ['f5', BEAT], ['d6', BEAT],
 ['d6', BEAT / 2], ['c6', BEAT / 2], ['b5', BEAT], ['g5', BEAT], ['g5', BEAT], ['c6', BEAT / 2],
 ['a#5', BEAT / 2], ['a5', BEAT], ['f5', BEAT], ['d6', BEAT], ['a5', BEAT], ['a#5', BEAT * 1.5]]

try:
 for note in liten_mus:
 speaker.play(note)
 sleep(0.1) # leave a gap between notes

finally: # Turn speaker off if interrupted
 speaker.off()

Servo

A servo motor connected to a single pin, 3.3v and ground.

[image: A diagram of the Raspberry Pi Pico connected to a servo motor]Move the servo to its minimum, mid and maximum positions.

from picozero import Servo
from time import sleep

servo = Servo(1)

servo.min()
sleep(1)

servo.mid()
sleep(1)

servo.max()
sleep(1)

servo.off()

Pulse the servo between its minumum and maximum position.

from picozero import Servo

servo = Servo(1)

servo.pulse()

Move the servo gradually from its minimum to maximum position in 100 increments.

from picozero import Servo
from time import sleep

servo = Servo(1)

for i in range(0, 100):
 servo.value = i / 100
 sleep(0.1)

servo.off()

Motor

Move a motor connected via two pins (forward and backward) and a motor controller board:

from picozero import Motor
from time import sleep

motor = Motor(14, 15)

motor.move()
sleep(1)
motor.stop()

Robot rover

Make a simple two-wheeled robot rover.

[image: A diagram of the Raspberry Pi Pico connected to two motors via a motor controller board powered by a battery pack.]Move the rover forward for 1 second and stop:

from picozero import Robot
from time import sleep

robot_rover = Robot(left=(14,15), right=(12,13))

move forward
robot_rover.forward()
sleep(1)
robot_rover.stop()

Move the rover (roughly) in a square:

from picozero import Robot

robot_rover = Robot(left=(14,15), right=(12,13))

for i in range(4):
 # move forward for 1 second
 robot_rover.forward(t=1, wait=True)
 # rotate to the left for 1 second
 robot_rover.left(t=1, wait=True)

Internal temperature sensor

Check the internal temperature of the Raspberry Pi Pico in degrees Celcius:

Choose View -> Plotter in Thonny to see a graph of the results

from picozero import pico_temp_sensor
from time import sleep

while True:
 print(pico_temp_sensor.temp)
 sleep(0.1)

Ultrasonic distance sensor

Get the distance in metres from an ultrasonic distance sensor (HC-SR04):

[image: A diagram of the Raspberry Pi Pico connected to an HC-SR04 distance sensor.]from picozero import DistanceSensor
from time import sleep

ds = DistanceSensor(echo=2, trigger=3)

while True:
 print(ds.distance)
 sleep(0.1)

picozero API

LED

	
picozero.LED(pin, pwm=True, active_high=True, initial_value=False)

	Returns an instance of DigitalLED or PWMLED depending on
the value of the pwm parameter.

from picozero import LED

my_pwm_led = LED(1)

my_digital_led = LED(2, pwm=False)

	Parameters

	
	pin (int) – The pin that the device is connected to.

	pin – If pwm is True (the default), a PWMLED will be
returned. If pwm is False, a DigitalLED will be
returned. A PWMLED can control the brightness of the LED but
uses 1 PWM channel.

	active_high (bool) – If True (the default), the on() method will set the Pin
to HIGH. If False, the on() method will set the Pin to
LOW (the off() method always does the opposite).

	initial_value (bool) – If False (the default), the device will be off initially. If
True, the device will be switched on initially.

DigitalLED

	
class picozero.DigitalLED(pin, active_high=True, initial_value=False)

	Bases: DigitalOutputDevice

Represents a simple LED, which can be switched on and off.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	active_high (bool) – If True (the default), the on() method will set the Pin
to HIGH. If False, the on() method will set the Pin to
LOW (the off() method always does the opposite).

	initial_value (bool) – If False (the default), the LED will be off initially. If
True, the LED will be switched on initially.

	
blink(on_time=1, off_time=None, n=None, wait=False)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds that the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds that the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None is
specified, the device will continue blinking forever. The default
is None.

	wait (bool) – If True, the method will block until the device stops turning on and off.
If False, the method will return and the device will turn on and off in
the background. Defaults to False.

	
close()

	Closes the device and turns the device off. Once closed, the device
can no longer be used.

	
off()

	Turns the device off.

	
on(value=1, t=None, wait=False)

	Turns the device on.

	Parameters

	
	value (float) – The value to set when turning on. Defaults to 1.

	t (float) – The time in seconds that the device should be on. If None is
specified, the device will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the device will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
toggle()

	If the device is off, turn it on. If it is on, turn it off.

	
property active_high

	Sets or returns the active_high property. If True, the
on() method will set the Pin to HIGH. If False,
the on() method will set the Pin to LOW (the off() method
always does the opposite).

	
property is_active

	Returns True if the device is on.

	
property is_lit

	Returns True if the device is on.

	
property pin

	Returns the pin number used by the device.

	
property value

	Sets or returns a value representing the state of the device: 1 is on, 0 is off.

PWMLED

	
class picozero.PWMLED(pin, freq=100, duty_factor=65535, active_high=True, initial_value=False)

	Bases: PWMOutputDevice

Represents an LED driven by a PWM pin; the brightness of the LED can be changed.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	freq (int) – The frequency of the PWM signal in hertz. Defaults to 100.

	duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and 65535.
Defaults to 65535.

	active_high (bool) – If True (the default), the on() method will set the Pin
to HIGH. If False, the on() method will set the Pin to
LOW (the off() method always does the opposite).

	initial_value (bool) – If False (the default), the LED will be off initially. If
True, the LED will be switched on initially.

	
blink(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None, the
device will continue blinking forever. The default is None.

	wait (bool) – If True, the method will block until the LED stops blinking. If False,
the method will return and the LED will blink in the background.
Defaults to False.

	fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

	fade_out_time (float) – The length of time in seconds to spend fading out. If None,
it will be the same as fade_in_time. Defaults to None.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states when fading. Defaults to 25.

	
close()

	Closes the device and turns the device off. Once closed, the device
can no longer be used.

	
off()

	Turns the device off.

	
on(value=1, t=None, wait=False)

	Turns the device on.

	Parameters

	
	value (float) – The value to set when turning on. Defaults to 1.

	t (float) – The time in seconds that the device should be on. If None is
specified, the device will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the device will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
pulse(fade_in_time=1, fade_out_time=None, n=None, wait=False, fps=25)

	Makes the device pulse on and off repeatedly.

	Parameters

	
	fade_in_time (float) – The length of time in seconds that the device will take to turn on.
Defaults to 1.

	fade_out_time (float) – The length of time in seconds that the device will take to turn off.
Defaults to 1.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states. Defaults to 25.

	n (int) – The number of times to pulse the LED. If None, the LED will pulse
forever. Defaults to None.

	wait (bool) – If True, the method will block until the LED stops pulsing. If False,
the method will return and the LED will pulse in the background.
Defaults to False.

	
toggle()

	If the device is off, turn it on. If it is on, turn it off.

	
property active_high

	Sets or returns the active_high property. If True, the
on() method will set the Pin to HIGH. If False,
the on() method will set the Pin to LOW (the off() method
always does the opposite).

	
property brightness

	Sets or returns a value representing the state of the device: 1 is on, 0 is off.

	
property freq

	Returns the current frequency of the device.

	
property is_active

	Returns True if the device is on.

	
property pin

	Returns the pin number used by the device.

	
property value

	Sets or returns a value representing the state of the device: 1 is on, 0 is off.

RGBLED

	
class picozero.RGBLED(red=None, green=None, blue=None, active_high=True, initial_value=(0, 0, 0), pwm=True)

	Bases: OutputDevice, PinsMixin

Extends OutputDevice and represents a full colour LED component (composed
of red, green, and blue LEDs).
Connect the common cathode (longest leg) to a ground pin; connect each of
the other legs (representing the red, green, and blue anodes) to any GP
pins. You should use three limiting resistors (one per anode).
The following code will make the LED yellow:

from picozero import RGBLED
rgb = RGBLED(1, 2, 3)
rgb.color = (1, 1, 0)

0–255 colours are also supported:

rgb.color = (255, 255, 0)

	Parameters

	
	red (int) – The GP pin that controls the red component of the RGB LED.

	green (int) – The GP pin that controls the green component of the RGB LED.

	blue (int) – The GP pin that controls the blue component of the RGB LED.

	active_high (bool) – Set to True (the default) for common cathode RGB LEDs. If you
are using a common anode RGB LED, set this to False.

	initial_value (Color or tuple) – The initial color for the RGB LED. Defaults to black (0, 0, 0).

	pwm (bool) – If True (the default), construct PWMLED instances for
each component of the RGBLED. If False, construct
DigitalLED instances.

	
blink(on_times=1, fade_times=0, colors=((1, 0, 0), (0, 1, 0), (0, 0, 1)), n=None, wait=False, fps=25)

	Makes the device blink between colours repeatedly.

	Parameters

	
	on_times (float) – Single value or tuple of numbers of seconds to stay on each colour. Defaults to 1 second.

	fade_times (float) – Single value or tuple of times to fade between each colour. Must be 0 if
pwm was False when the class was constructed.

	colors (tuple
Tuple of colours to blink between, use (0, 0, 0) for off.) – The colours to blink between. Defaults to red, green, blue.

	n (int or None) – Number of times to blink; None (the default) means forever.

	wait (bool) – If False (the default), use a Timer to manage blinking,
continue blinking, and return immediately. If False, only
return when the blinking is finished (warning: the default value of
n will result in this method never returning).

	
close()

	Turns the device off.

	
cycle(fade_times=1, colors=((1, 0, 0), (0, 1, 0), (0, 0, 1)), n=None, wait=False, fps=25)

	Makes the device fade in and out repeatedly.

	Parameters

	
	fade_times (float) – Single value or tuple of numbers of seconds to spend fading between colours. Defaults to 1.

	fade_times – Number of seconds to spend fading out. Defaults to 1.

	on_color – Tuple of colours to cycle between. Defaults to red, green, blue.

	n (int or None) – Number of times to cycle; None (the default) means forever.

	
invert()

	Inverts the state of the device. If the device is currently off
(value is (0, 0, 0)), this changes it to “fully” on
(value is (1, 1, 1)). If the device has a specific colour,
this method inverts the colour.

	
off()

	Turns the device off.

	
on()

	Turns the LED on. This is equivalent to setting the LED color to white, e.g.
(1, 1, 1).

	
pulse(fade_times=1, colors=((0, 0, 0), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 0, 0), (0, 0, 1)), n=None, wait=False, fps=25)

	Makes the device fade between colours repeatedly.

	Parameters

	
	fade_times (float) – Single value or tuple of numbers of seconds to spend fading. Defaults to 1.

	fade_out_time (float) – Number of seconds to spend fading out. Defaults to 1.

	on_color – Tuple of colours to pulse between in order. Defaults to red, off, green, off, blue, off.

	n (int or None) – Number of times to pulse; None (the default) means forever.

	
toggle()

	Toggles the state of the device. If the device has a specific colour, then that colour is saved and the device is turned off.
If the device is off, it will be changed to the last colour it had when it was on or, if none, to fully on (value is (1, 1, 1)).

	
property active_high

	Sets or returns the active_high property. If True, the
on() method will set the Pin to HIGH. If False,
the on() method will set the Pin to LOW (the off() method
always does the opposite).

	
property blue

	Represents the blue component of the LED as a value between 0 and 255 if pwm was True
when the class was constructed (but only takes values of 0 or 255 otherwise).

	
property color

	Represents the colour of the LED as an RGB 3-tuple of (red, green,
blue) where each value is between 0 and 255 if pwm was True
when the class was constructed (but only takes values of 0 or 255 otherwise).
For example, red would be (255, 0, 0) and yellow would be (255, 255,
0), whereas orange would be (255, 127, 0).

	
property colour

	Represents the colour of the LED as an RGB 3-tuple of (red, green,
blue) where each value is between 0 and 255 if pwm was True
when the class was constructed (but only takes values of 0 or 255 otherwise).
For example, red would be (255, 0, 0) and yellow would be (255, 255,
0), whereas orange would be (255, 127, 0).

	
property green

	Represents the green component of the LED as a value between 0 and 255 if pwm was True
when the class was constructed (but only takes values of 0 or 255 otherwise).

	
property is_active

	Returns True if the LED is currently active (not black) and
False otherwise.

	
property is_lit

	Returns True if the LED is currently active (not black) and
False otherwise.

	
property pins

	Returns a tuple of pins used by the device.

	
property red

	Represents the red component of the LED as a value between 0 and 255 if pwm was True
when the class was constructed (but only takes values of 0 or 255 otherwise).

	
property value

	Represents the colour of the LED as an RGB 3-tuple of (red, green,
blue) where each value is between 0 and 1 if pwm was True
when the class was constructed (but only takes values of 0 or 1 otherwise).
For example, red would be (1, 0, 0) and yellow would be (1, 1,
0), whereas orange would be (1, 0.5, 0).

Buzzer

	
class picozero.Buzzer(pin, active_high=True, initial_value=False)

	Bases: DigitalOutputDevice

Represents an active or passive buzzer, which can be turned on or off.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	active_high (bool) – If True (the default), the on() method will set the Pin
to HIGH. If False, the on() method will set the Pin to
LOW (the off() method always does the opposite).

	initial_value (bool) – If False (the default), the Buzzer will be off initially. If
True, the Buzzer will be switched on initially.

	
beep(on_time=1, off_time=None, n=None, wait=False)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds that the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds that the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None is
specified, the device will continue blinking forever. The default
is None.

	wait (bool) – If True, the method will block until the device stops turning on and off.
If False, the method will return and the device will turn on and off in
the background. Defaults to False.

	
blink(on_time=1, off_time=None, n=None, wait=False)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds that the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds that the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None is
specified, the device will continue blinking forever. The default
is None.

	wait (bool) – If True, the method will block until the device stops turning on and off.
If False, the method will return and the device will turn on and off in
the background. Defaults to False.

	
close()

	Closes the device and turns the device off. Once closed, the device
can no longer be used.

	
off()

	Turns the device off.

	
on(value=1, t=None, wait=False)

	Turns the device on.

	Parameters

	
	value (float) – The value to set when turning on. Defaults to 1.

	t (float) – The time in seconds that the device should be on. If None is
specified, the device will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the device will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
toggle()

	If the device is off, turn it on. If it is on, turn it off.

	
property active_high

	Sets or returns the active_high property. If True, the
on() method will set the Pin to HIGH. If False,
the on() method will set the Pin to LOW (the off() method
always does the opposite).

	
property is_active

	Returns True if the device is on.

	
property pin

	Returns the pin number used by the device.

	
property value

	Sets or returns a value representing the state of the device: 1 is on, 0 is off.

PWMBuzzer

	
class picozero.PWMBuzzer(pin, freq=440, duty_factor=1023, active_high=True, initial_value=False)

	Bases: PWMOutputDevice

Represents a passive buzzer driven by a PWM pin; the volume of the buzzer can be changed.

	Parameters

	
	pin (int) – The pin that the buzzer is connected to.

	freq (int) – The frequency of the PWM signal in hertz. Defaults to 440.

	duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and 65535.
Defaults to 1023.

	active_high (bool) – If True (the default), the on() method will set the Pin
to HIGH. If False, the on() method will set the Pin to
LOW (the off() method always does the opposite).

	initial_value (bool) – If False (the default), the buzzer will be off initially. If
True, the buzzer will be switched on initially.

	
beep(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None, the
device will continue blinking forever. The default is None.

	wait (bool) – If True, the method will block until the LED stops blinking. If False,
the method will return and the LED will blink in the background.
Defaults to False.

	fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

	fade_out_time (float) – The length of time in seconds to spend fading out. If None,
it will be the same as fade_in_time. Defaults to None.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states when fading. Defaults to 25.

	
blink(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None, the
device will continue blinking forever. The default is None.

	wait (bool) – If True, the method will block until the LED stops blinking. If False,
the method will return and the LED will blink in the background.
Defaults to False.

	fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

	fade_out_time (float) – The length of time in seconds to spend fading out. If None,
it will be the same as fade_in_time. Defaults to None.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states when fading. Defaults to 25.

	
close()

	Closes the device and turns the device off. Once closed, the device
can no longer be used.

	
off()

	Turns the device off.

	
on(value=1, t=None, wait=False)

	Turns the device on.

	Parameters

	
	value (float) – The value to set when turning on. Defaults to 1.

	t (float) – The time in seconds that the device should be on. If None is
specified, the device will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the device will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
pulse(fade_in_time=1, fade_out_time=None, n=None, wait=False, fps=25)

	Makes the device pulse on and off repeatedly.

	Parameters

	
	fade_in_time (float) – The length of time in seconds that the device will take to turn on.
Defaults to 1.

	fade_out_time (float) – The length of time in seconds that the device will take to turn off.
Defaults to 1.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states. Defaults to 25.

	n (int) – The number of times to pulse the LED. If None, the LED will pulse
forever. Defaults to None.

	wait (bool) – If True, the method will block until the LED stops pulsing. If False,
the method will return and the LED will pulse in the background.
Defaults to False.

	
toggle()

	If the device is off, turn it on. If it is on, turn it off.

	
property active_high

	Sets or returns the active_high property. If True, the
on() method will set the Pin to HIGH. If False,
the on() method will set the Pin to LOW (the off() method
always does the opposite).

	
property freq

	Returns the current frequency of the device.

	
property is_active

	Returns True if the device is on.

	
property pin

	Returns the pin number used by the device.

	
property value

	Sets or returns a value representing the state of the device: 1 is on, 0 is off.

	
property volume

	Sets or returns a value representing the state of the device: 1 is on, 0 is off.

Speaker

	
class picozero.Speaker(pin, initial_freq=440, initial_volume=0, duty_factor=1023, active_high=True)

	Bases: OutputDevice, PinMixin

Represents a speaker driven by a PWM pin.

	Parameters

	
	pin (int) – The pin that the speaker is connected to.

	initial_freq (int) – The initial frequency of the PWM signal in hertz. Defaults to 440.

	initial_volume (int) – The initial volume of the PWM signal. This is a value between 0 and
1. Defaults to 0.

	duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and 65535.
Defaults to 1023.

	active_high (bool) – If True (the default), the on() method will set the Pin
to HIGH. If False, the on() method will set the Pin to
LOW (the off() method always does the opposite).

	
beep(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)

	Makes the buzzer turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds that the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds that the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the beep operation. If None, the
device will continue beeping forever. The default is None.

	wait (bool) – If True, the method will block until the buzzer stops beeping. If False,
the method will return and the buzzer will beep in the background.
Defaults to False.

	fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

	fade_out_time (float) – The length of time in seconds to spend fading out. If None,
it will be the same as fade_in_time. Defaults to None.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states when fading. Defaults to 25.

	
blink(on_time=1, off_time=None, n=None, wait=False)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds that the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds that the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None is
specified, the device will continue blinking forever. The default
is None.

	wait (bool) – If True, the method will block until the device stops turning on and off.
If False, the method will return and the device will turn on and off in
the background. Defaults to False.

	
close()

	Turns the device off.

	
off()

	Turns the device off.

	
on(volume=1)

	Turns the device on.

	Parameters

	
	value (float) – The value to set when turning on. Defaults to 1.

	t (float) – The time in seconds that the device should be on. If None is
specified, the device will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the device will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
play(tune=440, duration=1, volume=1, n=1, wait=True)

	Plays a tune for a given duration.

	Parameters

	
	tune (int) – The tune to play can be specified as:

	a single “note”, represented as:
+ a frequency in Hz e.g. 440
+ a midi note e.g. 60
+ a note name as a string e.g. “E4”

	a list of notes and duration e.g. [440, 1] or [“E4”, 2]

	a list of two value tuples of (note, duration) e.g. [(440,1), (60, 2), (“e4”, 3)]

Defaults to 440.

	volume (int) – The volume of the tune; 1 is maximum volume, 0 is mute. Defaults to 1.

	duration (float) – The duration of each note in seconds. Defaults to 1.

	n (int) – The number of times to play the tune. If None, the tune will play
forever. Defaults to 1.

	wait (bool) – If True, the method will block until the tune has finished. If False,
the method will return and the tune will play in the background.
Defaults to True.

	
toggle()

	If the device is off, turn it on. If it is on, turn it off.

	
property active_high

	Sets or returns the active_high property. If True, the
on() method will set the Pin to HIGH. If False,
the on() method will set the Pin to LOW (the off() method
always does the opposite).

	
property freq

	Sets or returns the current frequency of the speaker.

	
property is_active

	Returns True if the device is on.

	
property pin

	Returns the pin number used by the device.

	
property value

	Sets or returns the value of the speaker. The value is a tuple of (freq, volume).

	
property volume

	Sets or returns the volume of the speaker: 1 for maximum volume, 0 for off.

Servo

	
class picozero.Servo(pin, initial_value=None, min_pulse_width=0.001, max_pulse_width=0.002, frame_width=0.02, duty_factor=65535)

	Bases: PWMOutputDevice

Represents a PWM-controlled servo motor.

Setting the value to 0 will move the servo to its minimum position,
1 will move the servo to its maximum position. Setting the value to
None will turn the servo “off” (i.e. no signal is sent).

	Parameters

	
	pin (int) – The pin the servo motor is connected to.

	initial_value (bool) – If 0, the servo will be set to its minimum position. If
1, the servo will set to its maximum position. If None
(the default), the position of the servo will not change.

	min_pulse_width (float) – The pulse width corresponding to the servo’s minimum position. This
defaults to 1ms.

	max_pulse_width (float) – The pulse width corresponding to the servo’s maximum position. This
defaults to 2ms.

	frame_width (float) – The length of time between servo control pulses measured in seconds.
This defaults to 20ms which is a common value for servos.

	duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and 65535.
Defaults to 65535.

	
blink(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None, the
device will continue blinking forever. The default is None.

	wait (bool) – If True, the method will block until the LED stops blinking. If False,
the method will return and the LED will blink in the background.
Defaults to False.

	fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

	fade_out_time (float) – The length of time in seconds to spend fading out. If None,
it will be the same as fade_in_time. Defaults to None.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states when fading. Defaults to 25.

	
close()

	Closes the device and turns the device off. Once closed, the device
can no longer be used.

	
max()

	Set the servo to its maximum position.

	
mid()

	Set the servo to its mid-point position.

	
min()

	Set the servo to its minimum position.

	
off()

	Turn the servo “off” by setting the value to None.

	
on(value=1, t=None, wait=False)

	Turns the device on.

	Parameters

	
	value (float) – The value to set when turning on. Defaults to 1.

	t (float) – The time in seconds that the device should be on. If None is
specified, the device will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the device will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
pulse(fade_in_time=1, fade_out_time=None, n=None, wait=False, fps=25)

	Makes the device pulse on and off repeatedly.

	Parameters

	
	fade_in_time (float) – The length of time in seconds that the device will take to turn on.
Defaults to 1.

	fade_out_time (float) – The length of time in seconds that the device will take to turn off.
Defaults to 1.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states. Defaults to 25.

	n (int) – The number of times to pulse the LED. If None, the LED will pulse
forever. Defaults to None.

	wait (bool) – If True, the method will block until the LED stops pulsing. If False,
the method will return and the LED will pulse in the background.
Defaults to False.

	
toggle()

	If the device is off, turn it on. If it is on, turn it off.

	
property active_high

	Sets or returns the active_high property. If True, the
on() method will set the Pin to HIGH. If False,
the on() method will set the Pin to LOW (the off() method
always does the opposite).

	
property freq

	Returns the current frequency of the device.

	
property is_active

	Returns True if the device is on.

	
property pin

	Returns the pin number used by the device.

	
property value

	Sets or returns a value representing the state of the device: 1 is on, 0 is off.

Motor

	
class picozero.Motor(forward, backward, pwm=True)

	Bases: PinsMixin

Represents a motor connected to a motor controller that has a two-pin
input. One pin drives the motor “forward”, the other drives the motor
“backward”.

	Parameters

	
	forward (int) – The GP pin that controls the “forward” motion of the motor.

	backward (int) – The GP pin that controls the “backward” motion of the motor.

	pwm (bool) – If True (the default), PWM pins are used to drive the motor.
When using PWM pins, values between 0 and 1 can be used to set the
speed.

	
backward(speed=1, t=None, wait=False)

	Makes the motor turn “backward”.

	Parameters

	
	speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults to 1.

	t (float) – The time in seconds that the motor should turn for. If None is
specified, the motor will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the motor will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
close()

	Closes the device and releases any resources. Once closed, the device
can no longer be used.

	
forward(speed=1, t=None, wait=False)

	Makes the motor turn “forward”.

	Parameters

	
	speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults to 1.

	t (float) – The time in seconds that the motor should turn for. If None is
specified, the motor will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the motor will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
off()

	Stops the motor turning.

	
on(speed=1, t=None, wait=False)

	Turns the motor on and makes it turn.

	Parameters

	
	speed (float) – The speed as a value between -1 and 1: 1 turns the motor at
full speed in one direction, -1 turns the motor at full speed in
the opposite direction. Defaults to 1.

	t (float) – The time in seconds that the motor should run for. If None is
specified, the motor will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the motor will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
start(speed=1, t=None, wait=False)

	Turns the motor on and makes it turn.

	Parameters

	
	speed (float) – The speed as a value between -1 and 1: 1 turns the motor at
full speed in one direction, -1 turns the motor at full speed in
the opposite direction. Defaults to 1.

	t (float) – The time in seconds that the motor should run for. If None is
specified, the motor will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the motor will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
stop()

	Stops the motor turning.

	
property pins

	Returns a tuple of pins used by the device.

	
property value

	Sets or returns the motor speed as a value between -1 and 1: -1 is full
speed “backward”, 1 is full speed “forward”, 0 is stopped.

Robot / Rover

	
class picozero.Robot(left, right, pwm=True)

	Bases: object

Represents a generic dual-motor robot / rover / buggy.

Alias for Rover.

This class is constructed with two tuples representing the forward and
backward pins of the left and right controllers. For example,
if the left motor’s controller is connected to pins 12 and 13, while the
right motor’s controller is connected to pins 14 and 15, then the following
example will drive the robot forward:

from picozero import Robot

robot = Robot(left=(12, 13), right=(14, 15))
robot.forward()

	Parameters

	
	left (tuple) – A tuple of two pins representing the forward and backward inputs of the
left motor’s controller.

	right (tuple) – A tuple of two pins representing the forward and backward inputs of the
right motor’s controller.

	pwm (bool) – If True (the default), pwm pins will be used, allowing variable
speed control.

	
backward(speed=1, t=None, wait=False)

	Makes the robot move “backward”.

	Parameters

	
	speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults to 1.

	t (float) – The time in seconds that the robot should move for. If None is
specified, the robot will continue to move until stopped. The default
is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the motor will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
close()

	Closes the device and releases any resources. Once closed, the device
can no longer be used.

	
forward(speed=1, t=None, wait=False)

	Makes the robot move “forward”.

	Parameters

	
	speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults to 1.

	t (float) – The time in seconds that the robot should move for. If None is
specified, the robot will continue to move until stopped. The default
is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the motor will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
left(speed=1, t=None, wait=False)

	Makes the robot turn “left” by turning the left motor backward and the
right motor forward.

	Parameters

	
	speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults to 1.

	t (float) – The time in seconds that the robot should turn for. If None is
specified, the robot will continue to turn until stopped. The default
is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the motor will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
right(speed=1, t=None, wait=False)

	Makes the robot turn “right” by turning the left motor forward and the
right motor backward.

	Parameters

	
	speed (float) – The speed as a value between 0 and 1: 1 is full speed, 0 is stop. Defaults to 1.

	t (float) – The time in seconds that the robot should turn for. If None is
specified, the robot will continue to turn until stopped. The default
is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the motor will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
stop()

	Stops the robot.

	
property left_motor

	Returns the left Motor.

	
property right_motor

	Returns the right Motor.

	
property value

	Represents the motion of the robot as a tuple of (left_motor_speed,
right_motor_speed) with (-1, -1) representing full speed backwards,
(1, 1) representing full speed forwards, and (0, 0)
representing stopped.

DigitalOutputDevice

	
class picozero.DigitalOutputDevice(pin, active_high=True, initial_value=False)

	Bases: OutputDevice, PinMixin

Represents a device driven by a digital pin.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	active_high (bool) – If True (the default), the on() method will set the Pin
to HIGH. If False, the on() method will set the Pin to
LOW (the off() method always does the opposite).

	initial_value (bool) – If False (the default), the LED will be off initially. If
True, the LED will be switched on initially.

	
blink(on_time=1, off_time=None, n=None, wait=False)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds that the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds that the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None is
specified, the device will continue blinking forever. The default
is None.

	wait (bool) – If True, the method will block until the device stops turning on and off.
If False, the method will return and the device will turn on and off in
the background. Defaults to False.

	
close()

	Closes the device and turns the device off. Once closed, the device
can no longer be used.

	
off()

	Turns the device off.

	
on(value=1, t=None, wait=False)

	Turns the device on.

	Parameters

	
	value (float) – The value to set when turning on. Defaults to 1.

	t (float) – The time in seconds that the device should be on. If None is
specified, the device will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the device will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
toggle()

	If the device is off, turn it on. If it is on, turn it off.

	
property active_high

	Sets or returns the active_high property. If True, the
on() method will set the Pin to HIGH. If False,
the on() method will set the Pin to LOW (the off() method
always does the opposite).

	
property is_active

	Returns True if the device is on.

	
property pin

	Returns the pin number used by the device.

	
property value

	Sets or returns a value representing the state of the device: 1 is on, 0 is off.

PWMOutputDevice

	
class picozero.PWMOutputDevice(pin, freq=100, duty_factor=65535, active_high=True, initial_value=False)

	Bases: OutputDevice, PinMixin

Represents a device driven by a PWM pin.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	freq (int) – The frequency of the PWM signal in hertz. Defaults to 100.

	duty_factor (int) – The duty factor of the PWM signal. This is a value between 0 and 65535.
Defaults to 65535.

	active_high (bool) – If True (the default), the on() method will set the Pin
to HIGH. If False, the on() method will set the Pin to
LOW (the off() method always does the opposite).

	initial_value (bool) – If False (the default), the LED will be off initially. If
True, the LED will be switched on initially.

	
blink(on_time=1, off_time=None, n=None, wait=False, fade_in_time=0, fade_out_time=None, fps=25)

	Makes the device turn on and off repeatedly.

	Parameters

	
	on_time (float) – The length of time in seconds the device will be on. Defaults to 1.

	off_time (float) – The length of time in seconds the device will be off. If None,
it will be the same as on_time. Defaults to None.

	n (int) – The number of times to repeat the blink operation. If None, the
device will continue blinking forever. The default is None.

	wait (bool) – If True, the method will block until the LED stops blinking. If False,
the method will return and the LED will blink in the background.
Defaults to False.

	fade_in_time (float) – The length of time in seconds to spend fading in. Defaults to 0.

	fade_out_time (float) – The length of time in seconds to spend fading out. If None,
it will be the same as fade_in_time. Defaults to None.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states when fading. Defaults to 25.

	
close()

	Closes the device and turns the device off. Once closed, the device
can no longer be used.

	
off()

	Turns the device off.

	
on(value=1, t=None, wait=False)

	Turns the device on.

	Parameters

	
	value (float) – The value to set when turning on. Defaults to 1.

	t (float) – The time in seconds that the device should be on. If None is
specified, the device will stay on. The default is None.

	wait (bool) – If True, the method will block until the time t has expired.
If False, the method will return and the device will turn on in
the background. Defaults to False. Only effective if t is not
None.

	
pulse(fade_in_time=1, fade_out_time=None, n=None, wait=False, fps=25)

	Makes the device pulse on and off repeatedly.

	Parameters

	
	fade_in_time (float) – The length of time in seconds that the device will take to turn on.
Defaults to 1.

	fade_out_time (float) – The length of time in seconds that the device will take to turn off.
Defaults to 1.

	fps (int) – The frames per second that will be used to calculate the number of
steps between off/on states. Defaults to 25.

	n (int) – The number of times to pulse the LED. If None, the LED will pulse
forever. Defaults to None.

	wait (bool) – If True, the method will block until the LED stops pulsing. If False,
the method will return and the LED will pulse in the background.
Defaults to False.

	
toggle()

	If the device is off, turn it on. If it is on, turn it off.

	
property active_high

	Sets or returns the active_high property. If True, the
on() method will set the Pin to HIGH. If False,
the on() method will set the Pin to LOW (the off() method
always does the opposite).

	
property freq

	Returns the current frequency of the device.

	
property is_active

	Returns True if the device is on.

	
property pin

	Returns the pin number used by the device.

	
property value

	Sets or returns a value representing the state of the device: 1 is on, 0 is off.

Button

	
class picozero.Button(pin, pull_up=True, bounce_time=0.02)

	Bases: Switch

Represents a push button, which can be either pressed or released.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	pull_up (bool) – If True (the default), the device will be pulled up to
HIGH. If False, the device will be pulled down to LOW.

	bounce_time (float) – The bounce time for the device. If set, the device will ignore
any button presses that happen within the bounce time after a
button release. This is useful to prevent accidental button
presses from registering as multiple presses. Defaults to 0.02
seconds.

	
close()

	Closes the device and releases any resources. Once closed, the device
can no longer be used.

	
property active_state

	Sets or returns the active state of the device. If None (the default),
the device will return the value that the pin is set to. If
True, the device will return True if the pin is
HIGH. If False, the device will return False if the
pin is LOW.

	
property is_active

	Returns True if the device is active.

	
property is_closed

	Returns True if the device is active.

	
property is_inactive

	Returns True if the device is inactive.

	
property is_open

	Returns True if the device is inactive.

	
property is_pressed

	Returns True if the device is active.

	
property is_released

	Returns True if the device is inactive.

	
property pin

	Returns the pin number used by the device.

	
property value

	Returns the current value of the device. This is either True
or False depending on the value of active_state.

	
property when_activated

	Returns a callback that will be called when the device is activated.

	
property when_closed

	Returns a callback that will be called when the device is activated.

	
property when_deactivated

	Returns a callback that will be called when the device is deactivated.

	
property when_opened

	Returns a callback that will be called when the device is deactivated.

	
property when_pressed

	Returns a callback that will be called when the device is activated.

	
property when_released

	Returns a callback that will be called when the device is deactivated.

Switch

	
class picozero.Switch(pin, pull_up=True, bounce_time=0.02)

	Bases: DigitalInputDevice

Represents a toggle switch, which is either open or closed.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	pull_up (bool) – If True (the default), the device will be pulled up to
HIGH. If False, the device will be pulled down to LOW.

	bounce_time (float) – The bounce time for the device. If set, the device will ignore
any button presses that happen within the bounce time after a
button release. This is useful to prevent accidental button
presses from registering as multiple presses. Defaults to 0.02
seconds.

	
close()

	Closes the device and releases any resources. Once closed, the device
can no longer be used.

	
property active_state

	Sets or returns the active state of the device. If None (the default),
the device will return the value that the pin is set to. If
True, the device will return True if the pin is
HIGH. If False, the device will return False if the
pin is LOW.

	
property is_active

	Returns True if the device is active.

	
property is_closed

	Returns True if the device is active.

	
property is_inactive

	Returns True if the device is inactive.

	
property is_open

	Returns True if the device is inactive.

	
property pin

	Returns the pin number used by the device.

	
property value

	Returns the current value of the device. This is either True
or False depending on the value of active_state.

	
property when_activated

	Returns a callback that will be called when the device is activated.

	
property when_closed

	Returns a callback that will be called when the device is activated.

	
property when_deactivated

	Returns a callback that will be called when the device is deactivated.

	
property when_opened

	Returns a callback that will be called when the device is deactivated.

Potentiometer / Pot

	
class picozero.Potentiometer(pin, active_state=True, threshold=0.5)

	Bases: AnalogInputDevice

Represents a potentiometer, which outputs a variable voltage
between 0 and 3.3V.

Alias for Pot.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	active_state – The active state of the device. If True (the default),
the AnalogInputDevice will assume that the device is
active when the pin is high and above the threshold. If
active_state is False, the device will be active when
the pin is low and below the threshold.

	threshold (float) – The threshold that the device must be above or below to be
considered active. The default is 0.5.

	
property active_state

	Sets or returns the active state of the device. If None (the default),
the device will return the value that the pin is set to. If
True, the device will return True if the pin is
HIGH. If False, the device will return False if the
pin is LOW.

	
property is_active

	Returns True if the device is active.

	
property pin

	Returns the pin number used by the device.

	
property threshold

	The threshold that the device must be above or below to be
considered active. The default is 0.5.

	
property value

	Returns the current value of the device. This is either True
or False depending on the value of active_state.

	
property voltage

	Returns the voltage of the analogue device.

TemperatureSensor / TempSensor / Thermistor

	
class picozero.TemperatureSensor(pin, active_state=True, threshold=0.5, conversion=None)

	Bases: AnalogInputDevice

Represents a TemperatureSensor, which outputs a variable voltage. The voltage
can be converted to a temperature using a conversion function passed as a
parameter.

Alias for Thermistor and TempSensor.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	active_state – The active state of the device. If True (the default),
the AnalogInputDevice will assume that the device is
active when the pin is high and above the threshold. If
active_state is False, the device will be active when
the pin is low and below the threshold.

	threshold (float) – The threshold that the device must be above or below to be
considered active. The default is 0.5.

	conversion (float) – A function that takes a voltage and returns a temperature.

e.g. The internal temperature sensor has a voltage range of 0.706V to 0.716V
and would use the follow conversion function:

def temp_conversion(voltage):
 return 27 - (voltage - 0.706)/0.001721

temp_sensor = TemperatureSensor(pin, conversion=temp_conversion)

If None (the default), the temp property will return None.

	
property active_state

	Sets or returns the active state of the device. If None (the default),
the device will return the value that the pin is set to. If
True, the device will return True if the pin is
HIGH. If False, the device will return False if the
pin is LOW.

	
property conversion

	Sets or returns the conversion function for the device.

	
property is_active

	Returns True if the device is active.

	
property pin

	Returns the pin number used by the device.

	
property temp

	Returns the temperature of the device. If the conversion function is not
set, this will return None.

	
property threshold

	The threshold that the device must be above or below to be
considered active. The default is 0.5.

	
property value

	Returns the current value of the device. This is either True
or False depending on the value of active_state.

	
property voltage

	Returns the voltage of the analogue device.

DistanceSensor

	
class picozero.DistanceSensor(echo, trigger, max_distance=1)

	Bases: PinsMixin

Represents a HC-SR04 ultrasonic distance sensor.

	Parameters

	
	echo (int) – The pin that the ECHO pin is connected to.

	trigger (int) – The pin that the TRIG pin is connected to.

	max_distance (float) – The value attribute reports a normalized value between 0 (too
close to measure) and 1 (maximum distance). This parameter specifies
the maximum distance expected in meters. This defaults to 1.

	
property distance

	Returns the current distance measured by the sensor in meters. Note
that this property will have a value between 0 and max_distance.

	
property max_distance

	Returns the maximum distance that the sensor will measure in metres.

	
property pins

	Returns a tuple of pins used by the device.

	
property value

	Returns a value between 0, indicating the reflector is either touching
the sensor or is sufficiently near that the sensor can’t tell the
difference, and 1, indicating the reflector is at or beyond the
specified max_distance. A return value of None indicates that the
echo was not received before the timeout.

DigitalInputDevice

	
class picozero.DigitalInputDevice(pin, pull_up=False, active_state=None, bounce_time=None)

	Bases: InputDevice, PinMixin

Represents a generic input device with digital functionality e.g. buttons
that can be either active or inactive.

	Parameters

	
	pin (int) – The pin that the device is connected to.

	pull_up (bool) – If True, the device will be pulled up to HIGH. If
False (the default), the device will be pulled down to LOW.

	active_state (bool) – If True (the default), the device will return True
if the pin is HIGH. If False, the device will return
False if the pin is LOW.

	bounce_time (float) – The bounce time for the device. If set, the device will ignore
any button presses that happen within the bounce time after a
button release. This is useful to prevent accidental button
presses from registering as multiple presses. The default is
None.

	
close()

	Closes the device and releases any resources. Once closed, the device
can no longer be used.

	
property active_state

	Sets or returns the active state of the device. If None (the default),
the device will return the value that the pin is set to. If
True, the device will return True if the pin is
HIGH. If False, the device will return False if the
pin is LOW.

	
property is_active

	Returns True if the device is active.

	
property is_inactive

	Returns True if the device is inactive.

	
property pin

	Returns the pin number used by the device.

	
property value

	Returns the current value of the device. This is either True
or False depending on the value of active_state.

	
property when_activated

	Returns a callback that will be called when the device is activated.

	
property when_deactivated

	Returns a callback that will be called when the device is deactivated.

pinout

	
picozero.pinout(output=True)

	Returns a textual representation of the Raspberry Pi pico pins and functions.

	Parameters

	output (bool) – If True (the default) the pinout will be “printed”.

Development

Instructions on how build and deploy picozero.

Pre-requisites

To build and deploy picozero, you need to install the dependencies

pip3 install twine sphinx

Build

	Update version numbers in the setup.py, picozero/__init__.py, and docs/conf.py files

	Add release to docs/changelog.rst

	Run setup.py and create a source distribution

python3 setup.py sdist

	Upload to PyPI

twine upload dist/*

	Push all changes to master branch

	Create a release [https://github.com/RaspberryPiFoundation/picozero/releases] in github and upload picozero-#-#-#.tar.gz source file to the release

Documentation

The documentation site is built using Sphinx.

Install sphinx using

pip3 install sphinx

To test the documentation build, run the following command from the docs directory

$./make html

The website will be built in the directory docs/_build/html.

Documentation can be viewed at picozero.readthedocs.io [https://picozero.readthedocs.io] and is automatically built and deployed on push to github.

Tests

The tests are designed to be run on a Raspberry Pi Pico.

	Install the picozero [https://pypi.org/project/picozero/] package

	Install the micropython-unittest [https://pypi.org/project/micropython-unittest/] package

	Copy the test_picozero.py file to the Pico

	Run the test_picozero.py file

If a test fails, it is helpful to be able to see verbose error messages. To see error messages, you need to modify the lib/unittest.py file on the Pico.

Locate the following code in the run_class function:

Uncomment to investigate failure in detail
#raise

Uncomment raise:

Uncomment to investigate failure in detail
raise

Contributing

Contributions to picozero are welcome. Please keep in mind that picozero is ‘lightweight’. It is designed to be easy to use but also needs to run on a microcontroller; please take this into account when considering feature requests or raising issues.

For more details, please see the following advice.

Status

As picozero is currently in Beta, pre-release 1.0, you should consider the following:

	The API is not yet set, however, this doesn’t mean that backwards compatibility is not important! It is a balancing act.

	Requests for new features will need to be prioritised and responses to feature requests may take some time.

	Refactoring of the code base is very likely and, as a result, pull requests may need rework.

	Issues are likely to exist within the code base. Be kind!

Suggestions

If you have an idea for a new feature or would like to see a device included in picozero, please raise an issue [https://github.com/RaspberryPiFoundation/picozero/issues]. Please explain your reasoning clearly.

Bugs

Please raise an issue [https://github.com/RaspberryPiFoundation/picozero/issues] for any bugs found. Please include code examples and circuit diagrams if appropriate.

Pull requests

All pull requests should be based on the dev [https://github.com/RaspberryPiFoundation/picozero/tree/dev] branch of picozero.

Change log

0.4.1 - 2022-12-22

	Introduced pinout()

	Bug fix with DigitalInputDevice.when_deactivated decorator

	Documentation tidy up and minor fixes

0.4.0 - 2022-11-18

	Introduced Servo class

	Documentation fixes

0.3.0 - 2022-08-12

	Introduced Motor, Robot, and DistanceSensor classes.

	Renamed LED factory use_pwm parameter to pwm to match other classes. Note: This is an API breaking change.

	Resolved issue with RGBLED when not using pwm.

	Resolved issue where blink / pulse rates of 0 raised a traceback error.

	Other minor bug fixes.

	Documentation updates.

0.2.0 - 2022-06-29

	Pico W compatibility fix for onboard LED.

0.1.1 - 2022-06-08

	Minor fixes for bugs found during testing.

	Small improvements to exception messages.

	Added close methods to Speaker and PWMOutputDevice.

	Added unit tests.

	Added RGBLED.colour as an alias to RGBLED.color.

0.1.0 - 2022-04-08

	Beta release.

	Documentation updates.

	Minor bug fixes and refactoring.

0.0.2 - 2022-03-31

	Bug fixes and documentation updates.

0.0.1 - 2022-03-21

	Initial alpha release to test installation process.

 Python Module Index

 p

 		 	

 		
 p	

 	
 	
 picozero	

Index

 A
 | B
 | C
 | D
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	active_high (picozero.Buzzer property)

 	(picozero.DigitalLED property)

 	(picozero.DigitalOutputDevice property)

 	(picozero.PWMBuzzer property)

 	(picozero.PWMLED property)

 	(picozero.PWMOutputDevice property)

 	(picozero.RGBLED property)

 	(picozero.Servo property)

 	(picozero.Speaker property)

 	
 	active_state (picozero.Button property)

 	(picozero.DigitalInputDevice property)

 	(picozero.Potentiometer property)

 	(picozero.Switch property)

 	(picozero.TemperatureSensor property)

B

 	
 	backward() (picozero.Motor method)

 	(picozero.Robot method)

 	beep() (picozero.Buzzer method)

 	(picozero.PWMBuzzer method)

 	(picozero.Speaker method)

 	blink() (picozero.Buzzer method)

 	(picozero.DigitalLED method)

 	(picozero.DigitalOutputDevice method)

 	(picozero.PWMBuzzer method)

 	(picozero.PWMLED method)

 	(picozero.PWMOutputDevice method)

 	(picozero.RGBLED method)

 	(picozero.Servo method)

 	(picozero.Speaker method)

 	
 	blue (picozero.RGBLED property)

 	brightness (picozero.PWMLED property)

 	Button (class in picozero)

 	Buzzer (class in picozero)

C

 	
 	close() (picozero.Button method)

 	(picozero.Buzzer method)

 	(picozero.DigitalInputDevice method)

 	(picozero.DigitalLED method)

 	(picozero.DigitalOutputDevice method)

 	(picozero.Motor method)

 	(picozero.PWMBuzzer method)

 	(picozero.PWMLED method)

 	(picozero.PWMOutputDevice method)

 	(picozero.RGBLED method)

 	(picozero.Robot method)

 	(picozero.Servo method)

 	(picozero.Speaker method)

 	(picozero.Switch method)

 	
 	color (picozero.RGBLED property)

 	colour (picozero.RGBLED property)

 	conversion (picozero.TemperatureSensor property)

 	cycle() (picozero.RGBLED method)

D

 	
 	DigitalInputDevice (class in picozero)

 	DigitalLED (class in picozero)

 	
 	DigitalOutputDevice (class in picozero)

 	distance (picozero.DistanceSensor property)

 	DistanceSensor (class in picozero)

F

 	
 	forward() (picozero.Motor method)

 	(picozero.Robot method)

 	freq (picozero.PWMBuzzer property)

 	(picozero.PWMLED property)

 	(picozero.PWMOutputDevice property)

 	(picozero.Servo property)

 	(picozero.Speaker property)

G

 	
 	green (picozero.RGBLED property)

I

 	
 	invert() (picozero.RGBLED method)

 	is_active (picozero.Button property)

 	(picozero.Buzzer property)

 	(picozero.DigitalInputDevice property)

 	(picozero.DigitalLED property)

 	(picozero.DigitalOutputDevice property)

 	(picozero.Potentiometer property)

 	(picozero.PWMBuzzer property)

 	(picozero.PWMLED property)

 	(picozero.PWMOutputDevice property)

 	(picozero.RGBLED property)

 	(picozero.Servo property)

 	(picozero.Speaker property)

 	(picozero.Switch property)

 	(picozero.TemperatureSensor property)

 	
 	is_closed (picozero.Button property)

 	(picozero.Switch property)

 	is_inactive (picozero.Button property)

 	(picozero.DigitalInputDevice property)

 	(picozero.Switch property)

 	is_lit (picozero.DigitalLED property)

 	(picozero.RGBLED property)

 	is_open (picozero.Button property)

 	(picozero.Switch property)

 	is_pressed (picozero.Button property)

 	is_released (picozero.Button property)

L

 	
 	LED() (in module picozero)

 	
 	left() (picozero.Robot method)

 	left_motor (picozero.Robot property)

M

 	
 	max() (picozero.Servo method)

 	max_distance (picozero.DistanceSensor property)

 	mid() (picozero.Servo method)

 	
 	min() (picozero.Servo method)

 	
 module

 	picozero

 	Motor (class in picozero)

O

 	
 	off() (picozero.Buzzer method)

 	(picozero.DigitalLED method)

 	(picozero.DigitalOutputDevice method)

 	(picozero.Motor method)

 	(picozero.PWMBuzzer method)

 	(picozero.PWMLED method)

 	(picozero.PWMOutputDevice method)

 	(picozero.RGBLED method)

 	(picozero.Servo method)

 	(picozero.Speaker method)

 	
 	on() (picozero.Buzzer method)

 	(picozero.DigitalLED method)

 	(picozero.DigitalOutputDevice method)

 	(picozero.Motor method)

 	(picozero.PWMBuzzer method)

 	(picozero.PWMLED method)

 	(picozero.PWMOutputDevice method)

 	(picozero.RGBLED method)

 	(picozero.Servo method)

 	(picozero.Speaker method)

P

 	
 	
 picozero

 	module

 	pin (picozero.Button property)

 	(picozero.Buzzer property)

 	(picozero.DigitalInputDevice property)

 	(picozero.DigitalLED property)

 	(picozero.DigitalOutputDevice property)

 	(picozero.Potentiometer property)

 	(picozero.PWMBuzzer property)

 	(picozero.PWMLED property)

 	(picozero.PWMOutputDevice property)

 	(picozero.Servo property)

 	(picozero.Speaker property)

 	(picozero.Switch property)

 	(picozero.TemperatureSensor property)

 	
 	pinout() (in module picozero)

 	pins (picozero.DistanceSensor property)

 	(picozero.Motor property)

 	(picozero.RGBLED property)

 	play() (picozero.Speaker method)

 	Potentiometer (class in picozero)

 	pulse() (picozero.PWMBuzzer method)

 	(picozero.PWMLED method)

 	(picozero.PWMOutputDevice method)

 	(picozero.RGBLED method)

 	(picozero.Servo method)

 	PWMBuzzer (class in picozero)

 	PWMLED (class in picozero)

 	PWMOutputDevice (class in picozero)

R

 	
 	red (picozero.RGBLED property)

 	RGBLED (class in picozero)

 	
 	right() (picozero.Robot method)

 	right_motor (picozero.Robot property)

 	Robot (class in picozero)

S

 	
 	Servo (class in picozero)

 	Speaker (class in picozero)

 	start() (picozero.Motor method)

 	
 	stop() (picozero.Motor method)

 	(picozero.Robot method)

 	Switch (class in picozero)

T

 	
 	temp (picozero.TemperatureSensor property)

 	TemperatureSensor (class in picozero)

 	threshold (picozero.Potentiometer property)

 	(picozero.TemperatureSensor property)

 	toggle() (picozero.Buzzer method)

 	(picozero.DigitalLED method)

 	(picozero.DigitalOutputDevice method)

 	(picozero.PWMBuzzer method)

 	(picozero.PWMLED method)

 	(picozero.PWMOutputDevice method)

 	(picozero.RGBLED method)

 	(picozero.Servo method)

 	(picozero.Speaker method)

V

 	
 	value (picozero.Button property)

 	(picozero.Buzzer property)

 	(picozero.DigitalInputDevice property)

 	(picozero.DigitalLED property)

 	(picozero.DigitalOutputDevice property)

 	(picozero.DistanceSensor property)

 	(picozero.Motor property)

 	(picozero.Potentiometer property)

 	(picozero.PWMBuzzer property)

 	(picozero.PWMLED property)

 	(picozero.PWMOutputDevice property)

 	(picozero.RGBLED property)

 	(picozero.Robot property)

 	(picozero.Servo property)

 	(picozero.Speaker property)

 	(picozero.Switch property)

 	(picozero.TemperatureSensor property)

 	
 	voltage (picozero.Potentiometer property)

 	(picozero.TemperatureSensor property)

 	volume (picozero.PWMBuzzer property)

 	(picozero.Speaker property)

W

 	
 	when_activated (picozero.Button property)

 	(picozero.DigitalInputDevice property)

 	(picozero.Switch property)

 	when_closed (picozero.Button property)

 	(picozero.Switch property)

 	when_deactivated (picozero.Button property)

 	(picozero.DigitalInputDevice property)

 	(picozero.Switch property)

 	
 	when_opened (picozero.Button property)

 	(picozero.Switch property)

 	when_pressed (picozero.Button property)

 	when_released (picozero.Button property)

 _static/minus.png

_static/plus.png

_images/save-this-computer.png
Th Where to save to? X

“This computer

Raspberry Pi Pico.

_images/save-this-raspberry-pi-pico.png
Th Where to save to? X

“This computer

Raspberry Pi Pico.

_images/run-current-script.jpg

_images/thonny-copy-picozero.jpg
les 3

“This computer
C:\ Users \ mjs \ Downloads

Raspberry Pi Pico.

@ picozero.py

‘

_images/thonny-install-package.jpg
TR Manage packages for Raspbery PiPico ® COM4

Search on PyP|

‘wa page:

-

picozero
picozero BIEDZEI0)

Latest stable version: 00.1

Summary: 0.1

‘Author: Raspbery Pi Foundation

Homepage: ithub.com/RaspbernyPiFoundation/picozero

nav.xhtml

 Table of Contents

 		
 picozero

 		
 Getting started

 		
 Install using Thonny

 		
 Requirements

 		
 Select the MicroPython interpreter

 		
 Install picozero from PyPI in Thonny

 		
 Manual install

 		
 Copy picozero.py using Thonny

 		
 Write a program to control the onboard LED

 		
 Run the program on your computer

 		
 Run the program on your Raspberry Pi Pico

 		
 Recipes

 		
 Importing picozero

 		
 Pico LED

 		
 Pin out

 		
 LEDs

 		
 Flash

 		
 Brightness

 		
 Buttons

 		
 RGB LEDs

 		
 Blink

 		
 Pulse

 		
 Cycle

 		
 Potentiometer

 		
 Buzzer

 		
 Speaker

 		
 Play a tune

 		
 Play individual notes

 		
 Servo

 		
 Motor

 		
 Robot rover

 		
 Internal temperature sensor

 		
 Ultrasonic distance sensor

 		
 picozero API

 		
 LED

 		
 LED()

 		
 DigitalLED

 		
 DigitalLED

 		
 PWMLED

 		
 PWMLED

 		
 RGBLED

 		
 RGBLED

 		
 Buzzer

 		
 Buzzer

 		
 PWMBuzzer

 		
 PWMBuzzer

 		
 Speaker

 		
 Speaker

 		
 Servo

 		
 Servo

 		
 Motor

 		
 Motor

 		
 Robot / Rover

 		
 Robot

 		
 DigitalOutputDevice

 		
 DigitalOutputDevice

 		
 PWMOutputDevice

 		
 PWMOutputDevice

 		
 Button

 		
 Button

 		
 Switch

 		
 Switch

 		
 Potentiometer / Pot

 		
 Potentiometer

 		
 TemperatureSensor / TempSensor / Thermistor

 		
 TemperatureSensor

 		
 DistanceSensor

 		
 DistanceSensor

 		
 DigitalInputDevice

 		
 DigitalInputDevice

 		
 pinout

 		
 pinout()

 		
 Development

 		
 Pre-requisites

 		
 Build

 		
 Documentation

 		
 Tests

 		
 Contributing

 		
 Status

 		
 Suggestions

 		
 Bugs

 		
 Pull requests

 		
 Change log

 		
 0.4.1 - 2022-12-22

 		
 0.4.0 - 2022-11-18

 		
 0.3.0 - 2022-08-12

 		
 0.2.0 - 2022-06-29

 		
 0.1.1 - 2022-06-08

 		
 0.1.0 - 2022-04-08

 		
 0.0.2 - 2022-03-31

 		
 0.0.1 - 2022-03-21

_images/thonny-packages-picozero.jpg
TR Manage packages for Raspbery PiPico ® COM4

picozerol

Search on PPl

Instalfrom PyPl
picozero 1fyou don't know where to get the package from, then most ikely you'll ant to search

the Python Package Index. Start by entering the name of the package in the search box.
above and pressing ENTER,

Instal from requirements file
Click hte to locate requirementsxt ile and intel the packages specfied in i

Upgrade or uninstall
For upgrading simply install the package again,
For uninstalling delete corresponding fles.

Scope
i

_images/thonny-switch-interpreter.jpg
T Thonny - <untitied> @ 1:1
Fie Edit View Run Tools Help

#uG O

<untitied>

Shel

>>>

Assistant 3¢

I TS
Al e
e
e ey
e

Configure interpreter,
WiicraPython (Raspbery Pi Pice]

_images/thonny-manage-packages.jpg
T Thonny - <untited> © 151

File Edit View Run | Tools Help

‘
g gy g (e (m)

Open Thonny program folder.

Open Thonny data folder. Assstant X

<unfitled> 3

Manage plug-ins.
Options.

MicroPython (Raspberry Pi Pico)

_images/thonny-navigate-downloads.jpg
<untitied> 3

@ picozero.py

_images/thonny-upload-files.jpg
“This computer
C:\ Users \ mjs \ Downloads

picozero.py.
Openin Thonny
Open in system default app.
Configure py fles..

Move to Recycle Bin
New directory.

Properties

Raspberry PiPico.

_images/thonny-view-files.jpg
T Thonny - <untitied> @ 1:1
File Edit | View Run Tools Help

v Assistant M
o ~C 0
- [|
Thiscom Notes. 1

Outtine
&N pogamtre
v shel

Stock
Varables

Program arguments
Plotter

Increasefontsize Ctrles
Decreasefontsize Ctrl+-

Focus editor AteE
Focus shell Altes

Shell 3¢
MicroPython vi1. 17|

Raspberry Pi Pico. =

_static/file.png

